Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1215246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809329

RESUMO

Introduction: SARS-CoV-2 viral load has been related to COVID-19 severity. The main aim of this study was to evaluate the relationship between SARS-CoV-2 viremia and SNPs in genes previously studied by our group as predictors of COVID-19 severity. Materials and methods: Retrospective observational study including 340 patients hospitalized for COVID-19 in the University Hospital La Princesa between March 2020 and December 2021, with at least one viremia determination. Positive viremia was considered when viral load was above the quantifiable threshold (20 copies/ml). A total of 38 SNPs were genotyped. To study their association with viremia a multivariate logistic regression was performed. Results: The mean age of the studied population was 64.5 years (SD 16.6), 60.9% patients were male and 79.4% white non-Hispanic. Only 126 patients (37.1%) had at least one positive viremia. After adjustment by confounders, the presence of the minor alleles of rs2071746 (HMOX1; T/T genotype OR 9.9 p < 0.0001), rs78958998 (probably associated with SERPING1 expression; A/T genotype OR 2.3, p = 0.04 and T/T genotype OR 12.9, p < 0.0001), and rs713400 (eQTL for TMPRSS2; C/T + T/T genotype OR 1.86, p = 0.10) were associated with higher risk of viremia, whereas the minor alleles of rs11052877 (CD69; A/G genotype OR 0.5, p = 0.04 and G/G genotype OR 0.3, p = 0.01), rs2660 (OAS1; A/G genotype OR 0.6, p = 0.08), rs896 (VIPR1; T/T genotype OR 0.4, p = 0.02) and rs33980500 (TRAF3IP2; C/T + T/T genotype OR 0.3, p = 0.01) were associated with lower risk of viremia. Conclusion: Genetic variants in HMOX1 (rs2071746), SERPING1 (rs78958998), TMPRSS2 (rs713400), CD69 (rs11052877), TRAF3IP2 (rs33980500), OAS1 (rs2660) and VIPR1 (rs896) could explain heterogeneity in SARS-CoV-2 viremia in our population.

2.
Front Med (Lausanne) ; 9: 855639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783606

RESUMO

Background: Interleukin 6 (IL6) levels and SARS-CoV-2 viremia have been correlated with COVID-19 severity. The association over time between them has not been assessed in a prospective cohort. Our aim was to evaluate the relationship between SARS-CoV-2 viremia and time evolution of IL6 levels in a COVID-19 prospective cohort. Methods: Secondary analysis from a prospective cohort including COVID-19 hospitalized patients from Hospital Universitario La Princesa between November 2020 and January 2021. Serial plasma samples were collected from admission until discharge. Viral load was quantified by Real-Time Polymerase Chain Reaction and IL6 levels with an enzyme immunoassay. To represent the evolution over time of both variables we used the graphic command twoway of Stata. Results: A total of 57 patients were recruited, with median age of 63 years (IQR [53-81]), 61.4% male and 68.4% Caucasian. The peak of viremia appeared shortly after symptom onset in patients with persistent viremia (more than 1 sample with > 1.3 log10 copies/ml) and also in those with at least one IL6 > 30 pg/ml, followed by a progressive increase in IL6 around 10 days later. Persistent viremia in the first week of hospitalization was associated with higher levels of IL6. Both IL6 and SARS-CoV-2 viral load were higher in males, with a quicker increase with age. Conclusion: In those patients with worse outcomes, an early peak of SARS-CoV-2 viral load precedes an increase in IL6 levels. Monitoring SARS-CoV-2 viral load during the first week after symptom onset may be helpful to predict disease severity in COVID-19 patients.

3.
Sci Rep ; 9(1): 14886, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624307

RESUMO

Several computational models, both continuum and discrete, allow for the simulation of collective cell behaviors in connection with challenges linked to disease modeling and understanding. Normally, discrete cell modelling employs quasi-infinite or boundary-less 2D lattices, hence modeling collective cell behaviors in Petri dish-like environments. The advent of lab- and organ-on-a-chip devices proves that the information obtained from 2D cell cultures, upon Petri dishes, differs importantly from the results obtained in more biomimetic micro-fluidic environments, made of interconnected chambers and channels. However, discrete cell modelling within lab- and organ-on-a-chip devices, to our knowledge, is not yet found in the literature, although it may prove useful for designing and optimizing these types of systems. Consequently, in this study we focus on the establishment of a direct connection between the computer-aided designs (CAD) of microfluidic systems, especially labs- and organs-on-chips (and their multi-chamber and multi-channel structures), and the lattices for discrete cell modeling approaches aimed at the simulation of collective cell interactions, whose boundaries are defined directly from the CAD models. We illustrate the proposal using a quite straightforward cellular automata model, apply it to simulating cells with different growth rates, within a selected set of microsystem designs, and validate it by tuning the growth rates with the support of cell culture experiments and by checking the results with a real microfluidic system.


Assuntos
Comunicação Celular , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Células 3T3 , Animais , Técnicas de Cultura de Células , Linhagem Celular , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Humanos , Camundongos , Técnicas Analíticas Microfluídicas , Microfluídica
4.
Mutat Res ; 545(1-2): 59-72, 2004 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-14698417

RESUMO

In spite of differences between female and male germ cells, and although both of them contribute to the gene pool of future generations, most germ cell mutagenicity studies in higher eukaryotes have been carried out on males. To study the response of female germ cells to mutagen/carcinogen exposure, the mutagenicity of two model chemicals like diethyl sulfate (DES) and hexamethylphosphoramide (HMPA), and the monofunctional methylating chemotherapeutic drug streptozotocin (STZ), has been analysed on repair efficient females of Drosophila melanogaster. Results previously obtained with N-ethyl-N-nitrosourea (ENU), another model chemical, have also been included in the analysis. The activity of bypass tolerance mechanism (BTM; represented by the mus308 locus) and nucleotide excision repair (NER) on the removal of oxygen and nitrogen ethylations was studied by determining DES mutagenicity in NER deficient females, comparing it with existing results for ENU, and by analysing both chemicals on BTM deficient females. Results indicate that (1) all chemicals are mutagenic on repair efficient females; (2) a measure of mutagenic activity ranked from the lowest DES to STZ, HMPA, and ENU as the highest. This order correlates with the repair of the respectively induced DNA damages, and with the mutagenic and carcinogenic potency of these compounds, considering the toxicity of cross-linking agents; (3) NER efficiently repairs nitrogen ethylation damage and seems to contribute to the processing of oxygen damage in female germ cells; and (4) BTM is involved on the processing of oxygen ethylation damage, whereas the results on nitrogen ethylation are not clear. Finally, these results indicate that differences between male and female germ cells affect the response to chemical exposure, and therefore demonstrate the necessity of analysing also female cells in germinal mutagenicity studies. In addition, these studies can provide important mechanistic information about germ cell chemical mutagenesis, and even when the analysis of oogonia is not possible, since all female germ cells are pre-meiotic, studies of oocytes could be a model for pre-meiotic cells.


Assuntos
Reparo do DNA/fisiologia , Drosophila melanogaster/genética , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Feminino , Oócitos/metabolismo , Oogônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA