Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prog Mol Biol Transl Sci ; 190(1): 219-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008000

RESUMO

Medical abzymology has made a great contribution to the development of general autoimmunity theory: it has put the autoantibodies (Ab) as the key brick of the theory to the level of physiological functionality by providing such Ab with the ability to catalyze and mediate direct and independent cytotoxic effect on cellular and molecular targets. Natural catalytic autoantibodies (abzymes) while being a pool of canonical Abs and possessing catalytic activity belong to the new group of physiologically active substances whose features and properties are evolutionary consolidated in one functionally active biomolecule. Therefore, further studies on Ab-mediated autoAg degradation and other targeted Ab-mediated proteolysis may provide biomarkers of newer generations and thus a supplementary tool for assessing the disease progression and predicting disability of the patients and persons at risks. This chapter is a summary of current knowledge and prognostic perspectives toward catalytic Abs in autoimmunity and thus some autoimmune clinical cases, their role in pathogenesis, and the exploitation of both whole molecules and their constituent parts in developing highly effective targeted drugs of the future to come, and thus the therapeutic protocols being individualized.


Assuntos
Anticorpos Catalíticos , Autoimunidade , Anticorpos Catalíticos/metabolismo , Autoanticorpos/metabolismo , Biomarcadores , Progressão da Doença , Humanos
2.
Curr Pharm Biotechnol ; 23(2): 307-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33845734

RESUMO

Exposure to environmental toxicants such as Arsenic (As) can result in As-induced alterations in immune regulators. Consequently, people who are more prone to viral infections like influenza A or B, H1N1, SARS CoV (Severe Acute Respiratory Syndrome Coronavirus), and SARS CoV2 may develop a susceptibility to immune responses in their lungs because our previous reports delineated the ability of QIAPI 1®, a melanin precursor, to dissociate water molecules with simultaneous therapeutic efficacy against central nervous system (CNS) diseases, retinopathy, and As-induced renal toxicity. Considering the commonalitie of lung pathology of SARS CoV and As-induced toxicity, the aim of this study is to decipher the efficacy of QIAPI 1® against pentavalent As-induced lung toxicity by examining the pulmonary pathology. Hematoxylin & Eosin (H&E) staining was used for ascertaining the lung pathology in Wistar rat models. Animals were divided into 3 groups: control group, group treated with pentavalent As, and a group treated with pentavalent As and QIAPI 1®. There were no significant changes in lung histopathology in the control group as indicated by intact morphology. The As-treated group revealed damage to the histoarchitecture with pulmonary edema, interstitial fibrosis, diffuse alveolar damage, Bronchiolitis obliterans organizing pneumonia (BOOP)-lesions, formation of hyaline membrane, multinucleated giant pneumocytes, atypical pneumocytes, inflammatory cell infiltration, and interstitial edema. The group treated with As and QIAPI 1® significantly associated with mitigated histological signs of lung inflammation induced by Arsenic. Therefore, QIAPI 1® can be recommended as antagonistic to Asinduced lung toxicity. In conclusion, this model could be preferred as a hypothetical model to examine the efficacy of QIAPI 1® in SARS CoV2-induced pulmonary damage. Future studies are warranted to delineate the efficacy of QIAPI 1® against SARS CoV and SARS CoV2 lung pathology.


Assuntos
Arsênio , COVID-19 , Vírus da Influenza A Subtipo H1N1 , Animais , Arsênio/toxicidade , Humanos , Pulmão , Ratos , Ratos Wistar , SARS-CoV-2
3.
CNS Neurol Disord Drug Targets ; 17(10): 743-756, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30179148

RESUMO

BACKGROUND & OBJECTIVE: Regulation of composition, volume and turnover of fluids surrounding the brain and damp cells is vital. These fluids transport all substances required for cells and remove the unwanted materials. This regulation tends to act as barrier to prevent free exchange of materials between the brain and blood. There are specific mechanisms concerned with fluid secretion of the controlled composition of the brain, and others responsible for reabsorption eventually to blood and the extracellular fluid whatever their composition is. The current view assumes that choroidal plexuses secrete the major part of Cerebrospinal Fluid (CSF), while the Blood-Brain Barrier (BBB) has a much less contribution to fluid production, generating Interstitial Fluid (ISF) that drains to CSF. The skull is a rigid box; thereby the sum of volumes occupied by the parenchyma with its ISF, related connective tissue, the vasculature, the meninges and the CSF must be relatively constant according to the Monroe-Kellie dogma. This constitutes a formidable challenge that normal organisms surpass daily. The ISF and CSF provide water and solutes influx and efflux from cells to these targeted fluids in a quite precise way. Microvessels within the parenchyma are sufficiently close to every cell where diffusion areas for solutes are tiny. Despite this, CSF and ISF exhibit very similar compositions, but differ significantly from blood plasma. Many hydrophilic substances are effectively prevented from the entry into the brain via blood, while others like neurotransmitters are extremely hindered from getting out of the brain. Anatomical principle of the barrier and routes of fluid transfer cannot explain the extraordinary accuracy of fluids and substances needed to enter or leave the brain firmly. There is one aspect that has not been deeply analyzed, despite being prevalent in all the above processes, it is considered a part of the CSF and ISF dynamics. This aspect is the energy necessary to propel them properly in time, form, space, quantity and temporality. CONCLUSION: The recent hypothesis based on glucose and ATP as sources of energy presents numerous contradictions and controversies. The discovery of the unsuspected intrinsic ability of melanin to dissociate and reform water molecules, similar to the role of chlorophyll in plants, was confirmed in the study of ISF and CSF biology.


Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Líquido Cefalorraquidiano/metabolismo , Melaninas/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Edema Encefálico/líquido cefalorraquidiano , Edema Encefálico/metabolismo , Plexo Corióideo/metabolismo , Plexo Corióideo/ultraestrutura , Homeostase , Humanos , Melaninas/química
4.
CNS Neurol Disord Drug Targets ; 15(2): 135-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26831264

RESUMO

Retinal adhesion mechanisms in mammals are quite complex and multifactorial in nature. To date, these mechanisms are incompletely understood due to a variety of chemical, physical, and physiological forces impinging upon retinal tissue: retinal pigment epithelium, nearby tissues as sclera and vitreous, the subretinal space, and the highly complex interphotoreceptor matrix that fills subretinal space. The adhesion of the retina to the choroid, rather than anatomical, is a dynamic process, as the retina detaches a few minutes after life ceases. The adhesion mechanisms described in the literature, such as intraocular pressure and the oncotic pressure of the choroid that seems to push the retina towards the choroid, the delicate anatomical relationships between the rod and cone photoreceptors, the retinal pigment epithelium, the existence of a complex material called interphotoreceptor matrix, as well as other metabolic and structural factors, still cannot explain the remarkable features observed in the adhesion mechanisms between the photoreceptor layer and retinal pigment epithelium cells. The unexpected intrinsic property of melanin to absorb light energy and transform it into chemically based free energy can explain normal adhesion of the sensory retina to the pigment epithelium. In this article, we explore and highlight this explanation, which states that it is definitely able to provide a new treatment avenue against devastating neurodegenerative properties.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Melaninas/metabolismo , Melaninas/uso terapêutico , Retina/metabolismo , Água/metabolismo , Animais , Doenças do Sistema Nervoso Central/tratamento farmacológico , Humanos , Melaninas/farmacologia , Retina/efeitos dos fármacos , Resultado do Tratamento
5.
CNS Neurol Disord Drug Targets ; 14(9): 1235-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295828

RESUMO

One of the biggest problems and challenges for the development of new drugs and treatment strategies against Alzheimer Disease (AD) is the crossing of target drugs into the blood brain barrier. The use of nanoparticles in drug delivery therapy holds much promise in targeting remote tissues, and as a result many studies have attempted to study the ultrastructural localization of nanoparticles in various tissues. However, there are currently no in vivo studies demonstrating the ultrastructural distribution of nanoparticles in the brain. The aim of this study was to address how intraperitoneal injection of silver nanoparticles in the brain leads to leaking on the inter-endothelial contact and luminal plasma membrane, thus elucidating the possibility of penetrating into the most affected areas in the Alzheimer brain (vascular endothelium, perivascular, neuronal and glial cells). Our results show that the silver nanoparticles reached the brain and were found in hippocampal areas, indicating that they can be conjugated and used to deliver the drugs into the cell cytoplasm of the damaged brain cells. The present study can be useful for the development of novel drug delivering therapy and useful in understanding the delivery, distribution and effects of silver nanoparticles in AD brain tissue at cellular and subcellular level.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Metálicas , Fármacos Neuroprotetores/administração & dosagem , Compostos de Prata , Doença de Alzheimer/patologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/ultraestrutura , Encéfalo/irrigação sanguínea , Encéfalo/ultraestrutura , Feminino , Injeções Intraperitoneais , Masculino , Microscopia Eletrônica , Microvasos/efeitos dos fármacos , Microvasos/ultraestrutura , Modelos Animais , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA