Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
5.
STAR Protoc ; 4(3): 102514, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573503

RESUMO

Here, we present a protocol for immunolabeling of molecules in Arabidopsis tissues. We describe steps for tissue fixation and embedding in resin of microtome-derived sections, immunolabeling using fluorescent and non-fluorescent secondary antibodies, and visualization of cytokinin and auxin molecules. This protocol is suitable to study reproductive structures such as inflorescences, flowers, fruits, and tissue-culture-derived samples. This protocol is useful for studying the distribution of a wide range of molecules including hormones and cell wall components. For complete details on the use and execution of this protocol, please refer to Herrera-Ubaldo et al. (2019).1.


Assuntos
Arabidopsis , Microtomia , Hormônios
8.
Plant Sci ; 329: 111617, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731748

RESUMO

With the continuous deterioration of arable land due to an ever-growing population, improvement of crops and crop protection have a fundamental role in maintaining and increasing crop productivity. Alternatives to the use of pesticides encompass the use of biological control agents, generation of new resistant crop cultivars, the application of plant activator agrochemicals to enhance plant defenses, and the use of gene editing techniques, like the CRISPR-Cas system. Here, we test the hypothesis that epigenome editing, via CRISPR activation (CRISPRa), activate tomato plant defense genes to confer resistance against pathogen attack. We provide evidence that edited tomato plants for the PATHOGENESIS-RELATED GENE 1 gene (SlPR-1) show enhanced disease resistance to Clavibacter michiganensis subsp. michiganensis infection. Resistance was assessed by evaluating disease progression and symptom appearance, pathogen accumulation, and changes in SlPR-1 gene expression at different time points. We determined that CRISPRa-edited plants develop enhanced disease-resistant to the pathogen without altering their agronomic characteristics and, above all, preventing the advancement of disease symptoms, stem canker, and plant death.


Assuntos
Solanum lycopersicum , Ativação Transcricional , Clavibacter/genética , Sistemas CRISPR-Cas , Edição de Genes , Produtos Agrícolas/genética , Doenças das Plantas/genética
11.
Mol Plant ; 16(1): 260-278, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36088536

RESUMO

Flowers are composed of organs whose identity is defined by the combinatorial activity of transcription factors (TFs). The interactions between MADS-box TFs and protein complex formation have been schematized in the floral quartet model of flower development. The gynoecium is the flower's female reproductive part, crucial for fruit and seed production and, hence, for reproductive success. After the establishment of carpel identity, many tissues arise to form a mature gynoecium. TFs have been described as regulators of gynoecium development, and some interactions and complexes have been identified. However, broad knowledge about the interactions among these TFs and their participation during development remains scarce. In this study, we used a systems biology approach to understand the formation of a complex reproductive unit-as the gynoecium-by mapping binary interactions between well-characterized TFs. We analyzed almost 4500 combinations and detected more than 250 protein-protein interactions (PPIs), resulting in a process-specific interaction map. Topological analyses suggest hidden functions and novel roles for many TFs. In addition, we observed a close relationship between TFs involved in auxin and cytokinin-signaling pathways and other TFs. Furthermore, we analyzed the network by combining PPI data, expression, and genetic data, which helped us to dissect it into several dynamic spatio-temporal subnetworks related to gynoecium development processes. Finally, we generated an extended PPI network that predicts new players in gynoecium development. Taken together, all these results serve as a valuable resource for the plant community.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Comunicação Celular , Ácidos Indolacéticos/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
12.
iScience ; 25(12): 105627, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465114

RESUMO

Evolution has long been considered to be a conservative process in which new genes arise from pre-existing genes through gene duplication, domain shuffling, horizontal transfer, overprinting, retrotransposition, etc. However, this view is changing as new genes originating from non-genic sequences are discovered in different organisms. Still, rather limited functional information is available. Here, we have identified TWISTED1 (TWT1), a possible de novo-originated protein-coding gene that modifies microtubule arrangement and causes helicoidal growth in Arabidopsis thaliana when its expression is increased. Interestingly, even though TWT1 is a likely recent gene, the lack of TWT1 function affects A. thaliana development. TWT1 seems to have originated from a non-genic sequence. If so, it would be one of the few examples to date of how during evolution de novo genes are integrated into developmental cellular and organismal processes.

13.
Plants (Basel) ; 11(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432874

RESUMO

Although much is known about seed and fruit development at the molecular level, many gaps remain in our understanding of how cell wall modifications can impact developmental processes in plants, as well as how biomechanical alterations influence seed and fruit growth. Mutants of Arabidopsis thaliana constitute an excellent tool to study the function of gene families devoted to cell wall biogenesis. We have characterized a collection of lines carrying mutations in representative cell wall-related genes for seed and fruit size developmental defects, as well as altered germination rates. We have linked these studies to cell wall composition and structure. Interestingly, we have found that disruption of genes involved in pectin maturation and hemicellulose deposition strongly influence germination dynamics. Finally, we focused on two transcriptional regulators, SEEDSTICK (STK) and LEUNIG-HOMOLOG (LUH), which positively regulate seed growth. Herein, we demonstrate that these factors regulate specific aspects of cell wall properties such as pectin distribution. We propose a model wherein changes in seed coat structure due to alterations in the xyloglucan-cellulose matrix deposition and pectin maturation are critical for organ growth and germination. The results demonstrate the importance of cell wall properties and remodeling of polysaccharides as major factors responsible for seed development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA