Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1323296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645391

RESUMO

The development of non-invasive methods and accessible tools for application to plant phenotyping is considered a breakthrough. This work presents the preliminary results using an electronic nose (E-Nose) and machine learning (ML) as affordable tools. An E-Nose is an electronic system used for smell global analysis, which emulates the human nose structure. The soybean (Glycine Max) was used to conduct this experiment under water stress. Commercial E-Nose was used, and a chamber was designed and built to conduct the measurement of the gas sample from the soybean. This experiment was conducted for 22 days, observing the stages of plant growth during this period. This chamber is embedded with relative humidity [RH (%)], temperature (°C), and CO2 concentration (ppm) sensors, as well as the natural light intensity, which was monitored. These systems allowed intermittent monitoring of each parameter to create a database. The soil used was the red-yellow dystrophic type and was covered to avoid evapotranspiration effects. The measurement with the electronic nose was done daily, during the morning and afternoon, and in two phenological situations of the plant (with the healthful soy irrigated with deionized water and underwater stress) until the growth V5 stage to obtain the plant gases emissions. Data mining techniques were used, through the software "Weka™" and the decision tree strategy. From the evaluation of the sensors database, a dynamic variation of plant respiration pattern was observed, with the two distinct behaviors observed in the morning (~9:30 am) and afternoon (3:30 pm). With the initial results obtained with the E-Nose signals and ML, it was possible to distinguish the two situations, i.e., the irrigated plant standard and underwater stress, the influence of the two periods of daylight, and influence of temporal variability of the weather. As a result of this investigation, a classifier was developed that, through a non-invasive analysis of gas samples, can accurately determine the absence of water in soybean plants with a rate of 94.4% accuracy. Future investigations should be carried out under controlled conditions that enable early detection of the stress level.

2.
Sensors (Basel) ; 20(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093329

RESUMO

Investigating the growth behavior of plant root systems as a function of soil water is considered an important information for the study of root physiology. A non-invasive tool based on electromagnetic wave transmittance in the microwave frequency range, operating close to 4.8 GHz, was developed using microstrip patch antennas to determine the volumetric moisture of soil in rhizoboxes. Antennas were placed on both sides of the rhizobox and, using a vector network analyzer, measured the S parameters. The dispersion parameter S21 (dB) was also used to show the effect of different soil types and temperature on the measurement. In addition, system sensitivity, reproducibility and repeatability were evaluated. The quantitative results of the soil moisture, measured in rhizoboxes, presented in this paper, demonstrate that the microwave technique using microstrip patch antennas is a reliable, non-invasive and accurate system, and has shown potentially promising applications for measurement of rhizobox-based root phenotyping.


Assuntos
Micro-Ondas , Solo/química , Raízes de Plantas
3.
Sensors (Basel) ; 12(6): 8278-300, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22969400

RESUMO

This review article discusses and documents the basic concepts and principles of nano/biosensors. More specifically, we comment on the use of Chemical Force Microscopy (CFM) to study various aspects of architectural and chemical design details of specific molecules and polymers and its influence on the control of chemical interactions between the Atomic Force Microscopy (AFM) tip and the sample. This technique is based on the fabrication of nanomechanical cantilever sensors (NCS) and microcantilever-based biosensors (MC-B), which can provide, depending on the application, rapid, sensitive, simple and low-cost in situ detection. Besides, it can provide high repeatability and reproducibility. Here, we review the applications of CFM through some application examples which should function as methodological questions to understand and transform this tool into a reliable source of data. This section is followed by a description of the theoretical principle and usage of the functionalized NCS and MC-B technique in several fields, such as agriculture, biotechnology and immunoassay. Finally, we hope this review will help the reader to appreciate how important the tools CFM, NCS and MC-B are for characterization and understanding of systems on the atomic scale.


Assuntos
Técnicas Biossensoriais/instrumentação , Microscopia de Força Atômica/métodos , Nanotecnologia/instrumentação , Fenômenos Mecânicos , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA