Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 96(7): 957-967, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30727217

RESUMO

Integration of host resistance and prothioconazole + tebuconazole fungicide application at anthesis to manage Fusarium head blight (FHB) and deoxynivalenol (DON) in wheat was evaluated using data from over 40 trials in 12 U.S. states. Means of FHB index (index) and DON from up to six resistance class-fungicide management combinations per trial (susceptible treated [S_TR] and untreated [S_UT]; moderately susceptible treated [MS_TR] and untreated [MS_UT]; moderately resistant treated [MR_TR] and untreated [MR_UT]) were used in multivariate meta-analyses, and mean log response ratios across trials were estimated and transformed to estimate mean percent control ( ) due to the management combinations relative to S_UT. All combinations led to a significant reduction in index and DON (P < 0.001). MR_TR was the most effective combination, with a of 76% for index and 71% for DON, followed by MS_TR (71 and 58%, respectively), MR_UT (54 and 51%, respectively), S_TR (53 and 39%, respectively), and MS_UT (43 and 30%, respectively). Calculations based on the principle of treatment independence showed that the combination of fungicide application and resistance was additive in terms of percent control for index and DON. Management combinations were ranked based on percent control relative to S_UT within each trial, and nonparametric analyses were performed to determine management combination stability across environments (trials) using the Kendall coefficient of concordance (W). There was a significant concordance of management combinations for both index and DON (P < 0.001), indicating a nonrandom ranking across environments and relatively low variability in the within-environment ranking of management combinations. MR_TR had the highest mean rank (best control relative to S_UT) and was one of the most stable management combinations across environments, with low rank stability variance (0.99 for index and 0.67 for DON). MS_UT had the lowest mean rank (poorest control) but was also one of the most stable management combinations. Based on Piepho's nonparametric rank-based variance homogeneity U test, there was an interaction of management combination and environment for index (P = 0.011) but not for DON (P = 0.147), indicating that the rank ordering for index depended somewhat on environment. In conclusion, although the magnitude of percent control will likely vary among environments, integrating a single tebuconazole + prothioconazole application at anthesis with cultivar resistance will be a more effective and stable management practice for both index and DON than either approach used alone.

2.
Phytopathology ; 100(2): 160-71, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20055650

RESUMO

ABSTRACT Multivariate random-effects meta-analyses were conducted on 12 years of data from 14 U.S. states to determine the mean yield and test-weight responses of wheat to treatment with propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole. All fungicides led to a significant increase in mean yield and test weight relative to the check (D; P < 0.001). Metconazole resulted in the highest overall yield increase, with a D of 450 kg/ha, followed by prothioconazole+ tebuconazole (444.5 kg/ha), prothioconazole (419.1 kg/ha), tebuconazole (272.6 kg/ha), and propiconazole (199.6 kg/ha). Metconazole, prothioconazole+tebuconazole, and prothioconazole also resulted in the highest increases in test weight, with D values of 17.4 to 19.4 kg/m(3), respectively. On a relative scale, the best three fungicides resulted in an overall 13.8 to 15.0% increase in yield but only a 2.5 to 2.8% increase in test weight. Except for prothioconazole+tebuconazole, wheat type significantly affected the yield response to treatment; depending on the fungicide, D was 110.0 to 163.7 kg/ha higher in spring than in soft-red winter wheat. Fusarium head blight (FHB) disease index (field or plot-level severity) in the untreated check plots, a measure of the risk of disease development in a study, had a significant effect on the yield response to treatment, in that D increased with increasing FHB index. The probability was estimated that fungicide treatment in a randomly selected study will result in a positive yield increase (p(+)) and increases of at least 250 and 500 kg/ha (p(250) and p(500), respectively). For the three most effective fungicide treatments (metconazole, prothioconazole+tebuconazole, and prothioconazole) at the higher selected FHB index, p(+) was very large (e.g., >/=0.99 for both wheat types) but p(500) was considerably lower (e.g., 0.78 to 0.92 for spring and 0.54 to 0.68 for soft-red winter wheat); at the lower FHB index, p(500) for the same three fungicides was 0.34 to 0.36 for spring and only 0.09 to 0.23 for soft-red winter wheat.


Assuntos
Biomassa , Fungicidas Industriais/farmacologia , Fusarium , Triazóis/farmacologia , Triticum/efeitos dos fármacos , Doenças das Plantas , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
3.
Phytopathology ; 98(9): 999-1011, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18943738

RESUMO

The effects of propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole (as a tank mix or a formulated premix) on the control of Fusarium head blight index (IND; field or plot-level disease severity) and deoxynivalenol (DON) in wheat were determined. A multivariate random-effects meta-analytical model was fitted to the log-transformed treatment means from over 100 uniform fungicide studies across 11 years and 14 states, and the mean log ratio (relative to the untreated check or tebuconazole mean) was determined as the overall effect size for quantifying fungicide efficacy. Mean log ratios were then transformed to estimate mean percent reduction in IND and DON relative to the untreated check (percent control: C(IND) and C(DON)) and relative to tebuconazole. All fungicides led to a significant reduction in IND and DON (P < 0.001), although there was substantial between-study variability. Prothioconazole+tebuconazole was the most effective fungicide for IND, with a C(IND) of 52%, followed by metconazole (50%), prothioconazole (48%), tebuconazole (40%), and propiconazole (32%). For DON, metconazole was the most effective treatment, with a [Formula: see text](DON) of 45%; prothioconazole+tebuconazole and prothioconazole showed similar efficacy, with C(DON) values of 42 and 43%, respectively; tebuconazole and propiconazole were the least effective, with C(DON) values of 23 and 12%, respectively. All fungicides, with the exception of propiconazole, were significantly more effective than tebuconazole for control of both IND and DON (P < 0.001). Relative to tebuconazole, prothioconazole, metconazole, and tebuconzole+prothioconzole reduced disease index a further 14 to 20% and DON a further 25 to 29%. In general, fungicide efficacy was significantly higher for spring wheat than for soft winter wheat studies; depending on the fungicide, the difference in percent control between spring and soft winter wheat was 5 to 20% for C(IND) and 7 to 16% for C(DON). Based on the mean log ratios and between-study variances, the probability that IND or DON in a treated plot from a randomly selected study was lower than that in the check by a fixed margin was determined, which confirmed the superior efficacy of prothioconazole, metconazole, and tebuconzole+prothioconzole for Fusarium head blight disease and toxin control.


Assuntos
Fungicidas Industriais/uso terapêutico , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Triazóis/uso terapêutico , Tricotecenos/toxicidade , Triticum/microbiologia , Metanálise como Assunto , Meio-Oeste dos Estados Unidos , Análise Multivariada , Triticum/efeitos dos fármacos
4.
Plant Dis ; 92(10): 1475, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30769560

RESUMO

Soybean cyst nematode (SCN), Heterodera glycines, is the most limiting biotic factor of soybean (Glycine max) production in Kentucky (KY). Unpublished results of a survey of commercial soybean fields in KY in the late 1980s indicated that H. glycines (HG) type 0 (race 3) was the most common HG type in the state. HG type 0 populations cannot reproduce (female index [FI] <10% compared with reproduction on a standard susceptible cultivar) on PI88788, which is the basis of H. glycines resistance in >90% of the soybean cultivars grown in the United States. Recent reports from Illinois (4), Missouri (3), and North Carolina (2) indicate that most populations of H. glycines in those states are now able to reproduce on resistant soybean cultivars derived from PI88788. Because cultivars derived from PI88788 are grown almost exclusively in KY to manage H. glycines, a limited survey was needed to update information on H. glycines populations. Most soybean fields in KY are grown in a 1-year rotation with corn (Zea mays), a nonhost crop for H. glycines. Therefore, the survey targeted fields that had most recently been in corn. Otherwise, fields were arbitrarily selected for sampling. Composite samples were collected in the fall of 2006 or the spring of 2007 and consisted of 20 soil cores (10 to 15 cm deep × 2.5 cm in diameter) collected following a zigzag pattern. Samples were mixed and stored at 4°C until processing. H. glycines cysts were extracted from soil by a sucrose centrifugation and flotation technique (1). Eggs were liberated by crushing cysts caught on a sieve (250-µm-diameter pores) with a rubber stopper. Liberated eggs were then collected, stained with acid fuchsin, and counted. Up to three samples from each county surveyed were sent to the University of Missouri Nematology Laboratory, Columbia, MO for HG type testing (3). A total of 139 samples, representing 19 major soybean-production counties in KY, were analyzed for H. glycines levels. H. glycines eggs were recovered from 106 (76%) samples and 16 (84%) counties. SCN population densities ranged from 38 to 4,275 eggs per 250 cm3 of soil. HG type tests were conducted on 20 populations from eight counties. HG types 1.2.5.7 (race 2) and 2.5.7 (race 1 or 5) were identified, with HG type 2.5.7 (race 1) being the most common (60% of populations screened). No HG type 0 populations were detected. All populations tested had a FI ≥10% on three of nine indicator lines (PI88788, PI209322, and PI548316). FIs on these indicators ranged from 15 to 80, 11 to 81, and 23 to 88%, respectively. Sixty percent of populations tested had FIs ≥30% on PI88788. Of the populations screened, 25 and 35% had FIs ≥10% on PI548402 (Peking) and Pickett, respectively. All populations tested had FIs = 0 on PI437654. Survey results indicate that cultivars deriving their H. glycines resistance from PI88788 may have reduced effectiveness in suppressing current H. glycines populations in KY. Consequently, producers may need to grow soybean cultivars derived from non-PI88788 resistance sources to successfully manage H. glycines in the future. References: (1) D. E. Hershman et al. Plant Dis. 74:761, 1990. (2) S. R. Koenning. Plant Dis. 88:942, 2004. (3) M. G. Mitchum et al. Plant Dis. 91:1473, 2007. (4) T. L. Niblack et al. Online publication. doi:10.1094/PHP-2008-0118-01-RS. Plant Health Progress, 2008.

5.
Phytopathology ; 97(2): 211-20, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18944377

RESUMO

ABSTRACT A meta-analysis of the effect of tebuconazole (e.g., Folicur 3.6F) on Fusarium head blight and deoxynivalenol (DON) content of wheat grain was performed using data collected from uniform fungicide trials (UFTs) conducted at multiple locations across U.S. wheat-growing regions. Response ratios (mean disease and DON levels from tebuconazole-treated plots, divided by mean disease and DON levels from untreated check plots) were calculated for each of 139 studies for tebuconazole effect on Fusarium head blight index (IND; field or plot-level disease severity, i.e., mean proportion of diseased spikelets per spike) and 101 studies for tebuconazole effect on DON contamination of harvested grain. A random-effects meta-analysis was performed on the log-transformed ratios, and the estimated mean log ratios were transformed to estimate the mean (expected) percent control for IND ( C(IND) ) and DON ( C(DON)). A mixed effects meta-analysis was then done to determine the effects of wheat type (spring versus winter wheat) and disease and DON levels in the controls on the log ratios. Tebuconazole was more effective at limiting IND than DON, with C(IND) and C(DON) values of 40.3 and 21.6%, respectively. The efficacy of tebuconazole as determined by the impact on both IND and DON was greater in spring wheat than in winter wheat (P < 0.01), with a 13.2% higher C(IND) and a 12.4% higher C(DON) in spring wheat than in winter wheat. In general, C(IND) and C(DON) were both at their lowest values (and not significantly different from 0) when mean IND and DON in the controls, respectively, were low (

6.
Plant Dis ; 90(7): 920-926, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30781031

RESUMO

The recently introduced soybean aphid (Aphis glycines), which is widespread in the soybean-growing regions in the United States, is the only aphid able to develop large colonies on soybean. Although its potential as a vector of plant viruses is recognized, reports on virus transmission efficiency by this aphid species are limited. In the present study, we examined the ability of A. glycines to transmit several economically important viruses. The results showed that A. glycines transmitted the potyviruses Bean yellow mosaic virus (BYMV) and Soybean mosaic virus from soybean to soybean more efficiently than Myzus persicae. However, M. persicae transmitted the alfamovirus Alfalfa mosaic virus and the potyviruses Tobacco etch virus (TEV) and Tobacco vein mottling virus (TVMV) from tobacco to tobacco more efficiently than A. glycines. This is the first report to demonstrate that the soybean aphid can vector TEV and TVMV, two economically important tobacco viruses. This also is the first report to document successful transmission of BYMV by A. glycines. All attempts to transmit the nepovirus Tobacco ringspot virus by A. glycines were unsuccessful, regardless of the length of the acquisition and inoculation feeding periods. Although the luteovirus Soybean dwarf virus (SbDV) was widely distributed in red and white clover in Kentucky, it was not detected in soybean. All transmission experiments of SbDV by A. glycines were unsuccessful. A reverse-transcription polymerase chain reaction (RT-PCR) assay was developed to detect SbDV in single aphids using a pair of primers designed to amplify a 372-bp PCR fragment in the coding region of SbDV coat protein. Although A. glycines was not a vector of SbDV, the virus was detected in 100% of tested aphids by RT-PCR after a 24- to 48-h virus acquisition access feeding. The practical applications of RT-PCR in detecting persistently transmitted viruses are discussed.

7.
Plant Dis ; 90(6): 834, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30781272

RESUMO

Phakopsora pachyrhizi, the causal organism of soybean rust, was first observed in the continental United States on 6 November 2004 (2). On 11 November 2005, as part a national soybean rust monitoring effort, 75 leaves of kudzu (Pueraria montana var. lobata) were arbitrarily collected from a patch growing in Princeton, Caldwell County, Kentucky (37.106650°N, 87.886120°W) that had been periodically scouted for the presence of the disease since May 2005. Upon microscopic examination of the nonincubated sample, a small (˜2.0 cm2) area of one leaf exhibited lesions, uredinia, and urediniospores characteristic of those reported for P. pachyrhizi (the Asian species) and P. meibomiae (the New World species) (2). No other infected leaves were observed despite repeated visits to the site and collection and observation of nearly 200 leaves. On 16 November 2005, one-half of the symptomatic tissue was sent by overnight courier to the USDA/APHIS/PPQ/NIS Laboratory, Beltsville, MD and the other half was sent to the Southern Plant Diagnostic Network Laboratory (SPDN), University of Florida, Gainesville. Both laboratories confirmed that the rust was a Phakopsora spp. on the basis of morphological examination. The preliminary polymerase chain reaction (PCR) testing conducted by the SPDN according to Harmon et al. (1) indicated the presence of P. pachyrhizi that was confirmed by the USDA/NPGBL using the validated modified real-time PCR assay described previously (2). The field diagnosis of P. pachyrhizi and preliminary PCR results were officially confirmed by USDA/APHIS on 18 November 2005. To our knowledge, this is the first report of P. pachyrhizi on kudzu or any host in Kentucky, and currently, the northernmost report of soybean rust on any host in the continental United States. References: (1) P. F. Harmon et al. On-line publication, doi:10.1094/PHP-2005-0613-O1-RS. Plant Health Progress, 2005. (2) R. W. Schneider et al. Plant Dis. 89:774, 2005.

8.
Plant Dis ; 81(10): 1100-1111, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30861702
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA