Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895263

RESUMO

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the striatum, predominantly associated with motor symptoms. However, non-motor deficits, particularly sensory symptoms, often precede motor manifestations, offering a potential early diagnostic window. The impact of non-motor deficits on sensation behavior and the underlying mechanisms remains poorly understood. In this study, we examined changes in tactile sensation within a Parkinsonian state by employing a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) to deplete striatal dopamine (DA). Leveraging the conserved mouse whisker system as a model for tactile-sensory stimulation, we conducted psychophysical experiments to assess sensory-driven behavioral performance during a tactile detection task in both the healthy and Parkinson-like states. Our findings reveal that DA depletion induces pronounced alterations in tactile sensation behavior, extending beyond expected motor impairments. We observed diverse behavioral deficits, spanning detection performance, task engagement, and reward accumulation, among lesioned individuals. While subjects with extreme DA depletion consistently showed severe sensory behavioral deficits, others with substantial DA depletion displayed minimal changes in sensory behavior performance. Moreover, some exhibited moderate degradation of behavioral performance, likely stemming from sensory signaling loss rather than motor impairment. The implementation of a sensory detection task is a promising approach to quantify the extent of impairments associated with DA depletion in the animal model. This facilitates the exploration of early non-motor deficits in PD, emphasizing the importance of incorporating sensory assessments in understanding the diverse spectrum of PD symptoms.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38778444

RESUMO

BACKGROUND: Prior studies have indicated that female individuals outnumber male individuals for certain types of dystonia. Few studies have addressed factors impacting these sex differences or their potential biological mechanisms. OBJECTIVES: To evaluate factors underlying sex differences in the dystonias and explore potential mechanisms for these differences. METHODS: Data from individuals with various types of dystonia were analyzed in relation to sex. Data came from two different sources. One source was the Dystonia Coalition database, which contains predominantly idiopathic adult-onset focal and segmental dystonias. The second source was the MDSGene database, which contains predominantly early-onset monogenic dystonias. RESULTS: The 3222 individuals from the Dystonia Coalition included 71% female participants and 29% male participants for an overall female-to-male ratio (F:M) of 2.4. This ratio varied according to body region affected and whether dystonia was task-specific. The female predominance was age-dependent. Sex did not have a significant impact on co-existing tremor, geste antagoniste, depression or anxiety. In the 1377 individuals from the MDSGene database, female participants outnumbered male participants for some genes (GNAL, GCH1, and ANO3) but not for other genes (THAP1, TH, and TOR1A). CONCLUSIONS: These results are in keeping with prior studies that have indicated female individuals outnumber male individuals for both adult-onset idiopathic and early onset monogenic dystonias. These results extend prior observations by revealing that sex ratios depend on the type of dystonia, age, and underlying genetics.

3.
Eur J Neurosci ; 59(7): 1407-1427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38123503

RESUMO

DYT1 dystonia is associated with decreased striatal dopamine release. In this study, we examined the possibility that ultrastructural changes of nigrostriatal dopamine terminals could contribute to this neurochemical imbalance using a serial block face/scanning electron microscope (SBF/SEM) and three-dimensional reconstruction to analyse striatal tyrosine hydroxylase-immunoreactive (TH-IR) terminals and their synapses in a DYT1(ΔE) knockin (DYT1-KI) mouse model of DYT1 dystonia. Furthermore, to study possible changes in vesicle packaging capacity of dopamine, we used transmission electron microscopy to assess the synaptic vesicle size in striatal dopamine terminals. Quantitative comparative analysis of 80 fully reconstructed TH-IR terminals in the WT and DYT1-KI mice indicate (1) no significant difference in the volume of TH-IR terminals; (2) no major change in the proportion of axo-spinous versus axo-dendritic synapses; (3) no significant change in the post-synaptic density (PSD) area of axo-dendritic synapses, while the PSDs of axo-spinous synapses were significantly smaller in DYT1-KI mice; (4) no significant change in the contact area between TH-IR terminals and dendritic shafts or spines, while the ratio of PSD area/contact area decreased significantly for both axo-dendritic and axo-spinous synapses in DYT1-KI mice; (5) no significant difference in the mitochondria volume; and (6) no significant difference in the synaptic vesicle area between the two groups. Altogether, these findings suggest that abnormal morphometric changes of nigrostriatal dopamine terminals and their post-synaptic targets are unlikely to be a major source of reduced striatal dopamine release in DYT1 dystonia.


Assuntos
Distonia Muscular Deformante , Distonia , Camundongos , Animais , Dopamina/análise , Distonia/genética , Distonia Muscular Deformante/genética , Corpo Estriado/química , Sinapses/ultraestrutura
4.
Cell Rep ; 42(11): 113435, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952158

RESUMO

The dorsal striatum is organized into functional territories defined by corticostriatal inputs onto both direct and indirect spiny projection neurons (SPNs), the major cell types within the striatum. In addition to circuit connectivity, striatal domains are likely defined by the spatially determined transcriptomes of SPNs themselves. To identify cell-type-specific spatiomolecular signatures of direct and indirect SPNs within dorsomedial, dorsolateral, and ventrolateral dorsal striatum, we used RNA profiling in situ hybridization with probes to >98% of protein coding genes. We demonstrate that the molecular identity of SPNs is mediated by hundreds of differentially expressed genes across territories of the striatum, revealing extraordinary heterogeneity in the expression of genes that mediate synaptic function in both direct and indirect SPNs. This deep insight into the complex spatiomolecular organization of the striatum provides a foundation for understanding both normal striatal function and for dissecting region-specific dysfunction in disorders of the striatum.


Assuntos
Corpo Estriado , Interneurônios , Camundongos , Animais , Camundongos Transgênicos , Corpo Estriado/metabolismo , Neostriado , Neuritos
5.
Int Rev Neurobiol ; 169: 217-258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37482394

RESUMO

Dystonia is characterised as uncontrolled, often painful involuntary muscle contractions that cause abnormal postures and repetitive or twisting movements. These movements can be continuous or sporadic and affect different parts of the body and range in severity. Dystonia and its related conditions present a huge cause of neurological morbidity worldwide. Although therapies are available, achieving optimal symptom control without major unwanted effects remains a challenge. Most pharmacological treatments for dystonia aim to modulate the effects of one or more neurotransmitters in the central nervous system, but doing so effectively and with precision is far from straightforward. In this chapter we discuss the physiology of key neurotransmitters, including dopamine, noradrenaline, serotonin (5-hydroxytryptamine), acetylcholine, GABA, glutamate, adenosine and cannabinoids, and their role in dystonia. We explore the ways in which existing pharmaceuticals as well as novel agents, currently in clinical trial or preclinical development, target dystonia, and their respective advantages and disadvantages. Finally, we discuss current and emerging genetic therapies which may be used to treat genetic forms of dystonia.


Assuntos
Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Humanos , Distonia/tratamento farmacológico , Distonia/diagnóstico , Distúrbios Distônicos/tratamento farmacológico , Dopamina , Neurotransmissores/uso terapêutico
6.
Neuroscience ; 517: 37-49, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871883

RESUMO

Although the mechanisms underlying dystonia are largely unknown, dystonia is often associated with abnormal dopamine neurotransmission. DOPA-responsive dystonia (DRD) is a prototype disorder for understanding dopamine dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of dopamine and alleviated by the indirect-acting dopamine agonist l-DOPA. Although adaptations in striatal dopamine receptor-mediated intracellular signaling have been studied extensively in models of Parkinson's disease, another movement disorders associated with dopamine deficiency, little is known about dopaminergic adaptations in dystonia. To identify the dopamine receptor-mediated intracellular signaling associated with dystonia, we used immunohistochemistry to quantify striatal protein kinase A activity and extracellular signal-related kinase (ERK) phosphorylation after dopaminergic challenges in a knockin mouse model of DRD. l-DOPA treatment induced the phosphorylation of both protein kinase A substrates and ERK largely in D1 dopamine receptor-expressing striatal neurons. As expected, this response was blocked by pretreatment with the D1 dopamine receptor antagonist SCH23390. The D2 dopamine receptor antagonist raclopride also significantly reduced the phosphorylation of ERK; this contrasts with models of parkinsonism in which l-DOPA-induced ERK phosphorylation is not mediated by D2 dopamine receptors. Further, the dysregulated signaling was dependent on striatal subdomains whereby ERK phosphorylation was largely confined to dorsomedial (associative) striatum while the dorsolateral (sensorimotor) striatum was unresponsive. This complex interaction between striatal functional domains and dysregulated dopamine-receptor mediated responses has not been observed in other models of dopamine deficiency, such as parkinsonism, suggesting that regional variation in dopamine-mediated neurotransmission may be a hallmark of dystonia.


Assuntos
Distonia , Transtornos Parkinsonianos , Camundongos , Animais , Dopamina/metabolismo , Levodopa/efeitos adversos , Distonia/genética , Corpo Estriado/metabolismo , Transtornos Parkinsonianos/metabolismo , Antagonistas de Dopamina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores de Dopamina D1/metabolismo
7.
Neurobiol Dis ; 168: 105699, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314320

RESUMO

Trihexyphenidyl (THP), a non-selective muscarinic receptor (mAChR) antagonist, is commonly used for the treatment of dystonia associated with TOR1A, otherwise known as DYT1 dystonia. A better understanding of the mechanism of action of THP is a critical step in the development of better therapeutics with fewer side effects. We previously found that THP normalizes the deficit in striatal dopamine (DA) release in a mouse model of TOR1A dystonia (Tor1a+/ΔE knockin (KI) mice), revealing a plausible mechanism of action for this compound, considering that abnormal DA neurotransmission is consistently associated with many forms of dystonia. However, the mAChR subtype(s) that mediate the rescue of striatal dopamine release remain unclear. In this study we used a combination of pharmacological challenges and cell-type specific mAChR conditional knockout mice of either sex to determine which mAChR subtypes mediate the DA release-enhancing effects of THP. We determined that THP acts in part at M4 mAChR on striatal cholinergic interneurons to enhance DA release in both Tor1a+/+ and Tor1a+/ΔE KI mice. Further, we found that the subtype selective M4 antagonist VU6021625 recapitulates the effects of THP. These data implicate a principal role for M4 mAChR located on striatal cholinergic interneurons in the mechanism of action of THP and suggest that subtype selective M4 mAChR antagonists may be effective therapeutics with fewer side effects than THP for the treatment of TOR1A dystonia.


Assuntos
Distonia , Distúrbios Distônicos , Animais , Colinérgicos/farmacologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina , Dopaminérgicos/farmacologia , Distonia/tratamento farmacológico , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Chaperonas Moleculares , Receptores Muscarínicos/metabolismo , Triexifenidil/farmacologia
8.
Neurobiol Dis ; 166: 105650, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35139431

RESUMO

This review provides an overview of the synaptic dysfunctions of neuronal circuits and underlying neurochemical alterations observed in the hyperkinetic movement disorders, dystonia and dyskinesia. These disorders exhibit similar changes in expression of synaptic plasticity and neuromodulation. This includes alterations in physical attributes of synapses, synaptic protein expression, and neurotransmitter systems, such as glutamate and gamma-aminobutyric acid (GABA), and neuromodulators, such as dopamine, acetylcholine, serotonin, adenosine, and endocannabinoids. A full understanding of the mechanisms and consequences of disruptions in synaptic function and plasticity will lend insight into the development of these disorders and new ways to combat maladaptive changes.


Assuntos
Discinesias , Distonia , Distúrbios Distônicos , Antiparkinsonianos , Corpo Estriado/metabolismo , Discinesias/metabolismo , Distonia/induzido quimicamente , Distonia/metabolismo , Distúrbios Distônicos/induzido quimicamente , Distúrbios Distônicos/metabolismo , Humanos , Levodopa/efeitos adversos
9.
FEBS J ; 289(19): 5834-5849, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34217152

RESUMO

Alcohol consumption affects motor behavior and motor control. Both acute and chronic alcohol abuse have been extensively investigated; however, the therapeutic efficacy of alcohol on some movement disorders, such as myoclonus-dystonia or essential tremor, still does not have a plausible mechanistic explanation. Yet, there are surprisingly few systematic trials with known GABAergic drugs mimicking the effect of alcohol on neurotransmission. In this brief survey, we aim to summarize the effects of EtOH on striatal function, providing an overview of its cellular and synaptic actions in a 'circuit-centered' view. In addition, we will review both experimental and clinical evidence, in the attempt to provide a plausible mechanistic explanation for alcohol-responsive movement disorders, with particular emphasis on dystonia. Different hypotheses emerge, which may provide a rationale for the utilization of drugs that mimic alcohol effects, predicting potential drug repositioning.


Assuntos
Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Distonia/tratamento farmacológico , Distúrbios Distônicos/tratamento farmacológico , Etanol , Humanos , Transmissão Sináptica
10.
ACS Pharmacol Transl Sci ; 4(4): 1306-1321, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423268

RESUMO

Nonselective antagonists of muscarinic acetylcholine receptors (mAChRs) that broadly inhibit all five mAChR subtypes provide an efficacious treatment for some movement disorders, including Parkinson's disease and dystonia. Despite their efficacy in these and other central nervous system disorders, antimuscarinic therapy has limited utility due to severe adverse effects that often limit their tolerability by patients. Recent advances in understanding the roles that each mAChR subtype plays in disease pathology suggest that highly selective ligands for individual subtypes may underlie the antiparkinsonian and antidystonic efficacy observed with the use of nonselective antimuscarinic therapeutics. Our recent work has indicated that the M4 muscarinic acetylcholine receptor has several important roles in opposing aberrant neurotransmitter release, intracellular signaling pathways, and brain circuits associated with movement disorders. This raises the possibility that selective antagonists of M4 may recapitulate the efficacy of nonselective antimuscarinic therapeutics and may decrease or eliminate the adverse effects associated with these drugs. However, this has not been directly tested due to lack of selective antagonists of M4. Here, we utilize genetic mAChR knockout animals in combination with nonselective mAChR antagonists to confirm that the M4 receptor activation is required for the locomotor-stimulating and antiparkinsonian efficacy in rodent models. We also report the synthesis, discovery, and characterization of the first-in-class selective M4 antagonists VU6013720, VU6021302, and VU6021625 and confirm that these optimized compounds have antiparkinsonian and antidystonic efficacy in pharmacological and genetic models of movement disorders.

11.
Exp Neurol ; 346: 113855, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464652

RESUMO

BACKGROUND: The dystonias are a group of disorders characterized by excessive muscle contractions leading to abnormal repetitive movements or postures. In blepharospasm, the face is affected, leading to excessive eye blinking and spasms of muscles around the eyes. The pathogenesis of blepharospasm is not well understood, but several imaging studies have implied subtle structural defects in several brain regions, including the cerebellum. OBJECTIVE: To delineate cerebellar pathology in brains collected at autopsy from 7 human subjects with blepharospasm and 9 matched controls. METHODS: Sections from 3 cerebellar regions were sampled and processed using Nissl and silver impregnation stains. Purkinje neurons were the focus of the evaluation, along with as several other subtle pathological features of cerebellar dysfunction such as Purkinje neuron axonal swellings (torpedo bodies), proliferation of basket cell processes around Purkinje neurons (hairy baskets), empty baskets (missing Purkinje neurons), and displacement of cell soma from their usual location (ectopic Purkinje neurons). RESULTS: The results revealed a significant reduction in Purkinje neuron and torpedo body density, but no changes in any of the other measures. CONCLUSIONS: These findings demonstrate subtle neuropathological changes similar to those reported for subjects with cervical dystonia. These findings may underly some of the subtle imaging changes reported for blepharospasm.


Assuntos
Blefarospasmo/patologia , Cerebelo/patologia , Células de Purkinje/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Mol Genet Metab ; 133(4): 352-361, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34092491

RESUMO

Dystonia is characterized by involuntary muscle contractions that cause debilitating twisting movements and postures. Although dysfunction of the basal ganglia, a brain region that mediates movement, is implicated in many forms of dystonia, the underlying mechanisms are unclear. The inherited metabolic disorder DOPA-responsive dystonia is considered a prototype for understanding basal ganglia dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of the neurotransmitter dopamine, which mediates the activity of the basal ganglia. Therefore, to reveal abnormal striatal cellular processes and pathways implicated in dystonia, we used an unbiased proteomic approach in a knockin mouse model of DOPA-responsive dystonia, a model in which the striatum is known to play a central role in the expression of dystonia. Fifty-seven of the 1805 proteins identified were differentially regulated in DOPA-responsive dystonia mice compared to control mice. Most differentially regulated proteins were associated with gene ontology terms that implicated either mitochondrial or synaptic dysfunction whereby proteins associated with mitochondrial function were generally over-represented and proteins associated with synaptic function were largely under-represented. Remarkably, nearly 20% of the differentially regulated striatal proteins identified in our screen are associated with pathogenic variants that cause inherited disorders with dystonia as a sign in humans suggesting shared mechanisms across many different forms of dystonia.


Assuntos
Distúrbios Distônicos/genética , Proteômica/métodos , Animais , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Distúrbios Distônicos/fisiopatologia , Feminino , Técnicas de Introdução de Genes , Ontologia Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Sci Rep ; 11(1): 8523, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875724

RESUMO

Lesch-Nyhan disease (LND) is an inherited disorder caused by pathogenic variants in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase (HGprt). We generated 6 induced pluripotent stem cell (iPSC) lines from 3 individuals with LND, along with 6 control lines from 3 normal individuals. All 12 lines had the characteristics of pluripotent stem cells, as assessed by immunostaining for pluripotency markers, expression of pluripotency genes, and differentiation into the 3 primary germ cell layers. Gene expression profiling with RNAseq demonstrated significant heterogeneity among the lines. Despite this heterogeneity, several anticipated abnormalities were readily detectable across all LND lines, including reduced HPRT1 mRNA. Several unexpected abnormalities were also consistently detectable across the LND lines, including decreases in FAR2P1 and increases in RNF39. Shotgun proteomics also demonstrated several expected abnormalities in the LND lines, such as absence of HGprt protein. The proteomics study also revealed several unexpected abnormalities across the LND lines, including increases in GNAO1 decreases in NSE4A. There was a good but partial correlation between abnormalities revealed by the RNAseq and proteomics methods. Finally, functional studies demonstrated LND lines had no HGprt enzyme activity and resistance to the toxic pro-drug 6-thioguanine. Intracellular purines in the LND lines were normal, but they did not recycle hypoxanthine. These cells provide a novel resource to reveal insights into the relevance of heterogeneity among iPSC lines and applications for modeling LND.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Síndrome de Lesch-Nyhan/patologia , Adolescente , Adulto , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Criança , Perfilação da Expressão Gênica/métodos , Humanos , Hipoxantina Fosforribosiltransferase/genética , Síndrome de Lesch-Nyhan/genética , Masculino , Purinas/metabolismo , RNA Mensageiro/genética , Adulto Jovem
14.
Neurobiol Dis ; 155: 105369, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894367

RESUMO

TOR1A-associated dystonia, otherwise known as DYT1 dystonia, is an inherited dystonia caused by a three base-pair deletion in the TOR1A gene (TOR1AΔE). Although the mechanisms underlying the dystonic movements are largely unknown, abnormalities in striatal dopamine and acetylcholine neurotransmission are consistently implicated whereby dopamine release is reduced while cholinergic tone is increased. Because striatal cholinergic neurotransmission mediates dopamine release, it is not known if the dopamine release deficit is mediated indirectly by abnormal acetylcholine neurotransmission or if Tor1a(ΔE) acts directly within dopaminergic neurons to attenuate release. To dissect the microcircuit that governs the deficit in dopamine release, we conditionally expressed Tor1a(ΔE) in either dopamine neurons or cholinergic interneurons in mice and assessed striatal dopamine release using ex vivo fast scan cyclic voltammetry or dopamine efflux using in vivo microdialysis. Conditional expression of Tor1a(ΔE) in cholinergic neurons did not affect striatal dopamine release. In contrast, conditional expression of Tor1a(ΔE) in dopamine neurons reduced dopamine release to 50% of normal, which is comparable to the deficit in Tor1a+/ΔE knockin mice that express the mutation ubiquitously. Despite the deficit in dopamine release, we found that the Tor1a(ΔE) mutation does not cause obvious nerve terminal dysfunction as other presynaptic mechanisms, including electrical excitability, vesicle recycling/refilling, Ca2+ signaling, D2 dopamine autoreceptor function and GABAB receptor function, are intact. Although the mechanistic link between Tor1a(ΔE) and dopamine release is unclear, these results clearly demonstrate that the defect in dopamine release is caused by the action of the Tor1a(ΔE) mutation within dopamine neurons.


Assuntos
Modelos Animais de Doenças , Dopamina/genética , Dopamina/metabolismo , Distonia/genética , Distonia/metabolismo , Chaperonas Moleculares/genética , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Distonia/patologia , Feminino , Microdissecção e Captura a Laser/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/antagonistas & inibidores , Mutação/fisiologia
15.
Neurobiol Dis ; 130: 104526, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31279827

RESUMO

Dystonia is a movement disorder characterized by involuntary muscle contractions, twisting movements, and abnormal postures that may affect one or multiple body regions. Dystonia is the third most common movement disorder after Parkinson's disease and essential tremor. Despite its relative frequency, small molecule therapeutics for dystonia are limited. Development of new therapeutics is further hampered by the heterogeneity of both clinical symptoms and etiologies in dystonia. Recent advances in both animal and cell-based models have helped clarify divergent etiologies in dystonia and have facilitated the identification of new therapeutic targets. Advances in medicinal chemistry have also made available novel compounds for testing in biochemical, physiological, and behavioral models of dystonia. Here, we briefly review motor circuit anatomy and the anatomical and functional abnormalities in dystonia. We then discuss recently identified therapeutic targets in dystonia based on recent preclinical animal studies and clinical trials investigating novel therapeutics.


Assuntos
Gânglios da Base/fisiopatologia , Cerebelo/fisiopatologia , Distonia/tratamento farmacológico , Distúrbios Distônicos/tratamento farmacológico , Animais , Modelos Animais de Doenças , Descoberta de Drogas , Distonia/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Humanos
16.
Neurobiol Dis ; 125: 115-122, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707939

RESUMO

Trihexyphenidyl, a nonselective muscarinic receptor antagonist, is the small molecule drug of choice for the treatment of DYT1 dystonia, but it is poorly tolerated due to significant side effects. A better understanding of the mechanism of action of trihexyphenidyl is needed for the development of improved treatments. Because DTY1 dystonia is associated with both abnormal cholinergic neurotransmission and abnormal dopamine regulation, we tested the hypothesis that trihexyphenidyl normalizes striatal dopamine release in a mouse model of DYT1 dystonia using ex vivo fast scan cyclic voltammetry and in vivo microdialysis. Trihexyphenidyl increased striatal dopamine release and efflux as assessed by ex vivo voltammetry and in vivo microdialysis respectively. In contrast, ʟ-DOPA, which is not usually effective for the treatment of DYT1 dystonia, did not increase dopamine release in either Dyt1 or control mice. Trihexyphenidyl was less effective at enhancing dopamine release in Dyt1 mice relative to controls ex vivo (mean increase WT: 65% vs Dyt1: 35%). Trihexyphenidyl required nicotinic receptors but not glutamate receptors to increase dopamine release. Dyt1 mice were more sensitive to the dopamine release decreasing effects of nicotinic acetylcholine receptor antagonism (IC50: WT = 29.46 nM, Dyt1 = 12.26 nM) and less sensitive to acetylcholinesterase inhibitors suggesting that nicotinic acetylcholine receptor neurotransmission is altered in Dyt1 mice, that nicotinic receptors indirectly mediate the differential effects of trihexyphenidyl in Dyt1 mice, and that nicotinic receptors may be suitable therapeutic targets for DYT1 dystonia.


Assuntos
Corpo Estriado/efeitos dos fármacos , Dopamina/biossíntese , Distonia Muscular Deformante , Transmissão Sináptica/efeitos dos fármacos , Triexifenidil/farmacologia , Animais , Modelos Animais de Doenças , Distonia Muscular Deformante/metabolismo , Distonia Muscular Deformante/fisiopatologia , Técnicas de Introdução de Genes , Camundongos , Chaperonas Moleculares/genética , Antagonistas Muscarínicos/farmacologia , Receptores Nicotínicos/metabolismo
17.
Front Syst Neurosci ; 12: 28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997483

RESUMO

Striatal cholinergic dysfunction is a common phenotype associated with various forms of dystonia in which anti-cholinergic drugs have some therapeutic benefits. However, the underlying substrate of striatal cholinergic defects in dystonia remain poorly understood. In this study, we used a recently developed knock-in mouse model of dopamine-responsive dystonia (DRD) with strong symptomatic responses to anti-cholinergic drugs, to assess changes in the prevalence and morphology of striatal cholinergic interneurons (ChIs) in a model of generalized dystonia. Unbiased stereological neuronal counts and Sholl analysis were used to address these issues. To determine the potential effect of aging on the number of ChIs, both young (3 months old) and aged (15 months old) mice were used. For purpose of comparisons with ChIs, the number of GABAergic parvalbumin (PV)-immunoreactive striatal interneurons was also quantified in young mice. Overall, no significant change in the prevalence of ChIs and PV-immunoreactive cells was found throughout various functional regions of the striatum in young DRD mice. Similar results were found for ChIs in aged animals. Subtle changes in the extent and complexity of the dendritic tree of ChIs were found in middle and caudal regions of the striatum in DRD mice. Additional immunohistochemical data also suggested lack of significant change in the expression of striatal cholinergic M1 and M4 muscarinic receptors immunoreactivity in DRD mice. Thus, together with our previous data from a knock-in mouse model of DYT-1 dystonia (Song et al., 2013), our data further suggest that the dysregulation of striatal cholinergic transmission in dystonia is not associated with major neuroplastic changes in the morphology or prevalence of striatal ChIs. Highlights -There is no significant change in the number of striatal ChIs in young and aged mice model of DRD-There is no significant change in the prevalence of striatal GABAergic PV-containing interneurons in the striatum of young mice models of DRD-Subtle morphological changes in the dendritic arborization of striatal ChIs are found in the middle and caudal tiers of the striatum in young mice models of DRD-The levels of both M1 and M4 muscarinic receptors immunoreactivity are not significantly changed in the striatum of DRD mice-Major changes in the prevalence and morphology of striatal ChIs are unlikely to underlie striatal cholinergic dysfunction in DRD.

18.
J Pharmacol Exp Ther ; 365(1): 20-26, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29348266

RESUMO

Although dystonia is often associated with abnormal dopamine neurotransmission, dopaminergic drugs are not currently used to treat dystonia because there is a general view that dopaminergic drugs are ineffective. However, there is little conclusive evidence to support or refute this assumption. Therefore, to assess the therapeutic potential of these compounds, we analyzed results from multiple trials of dopamine receptor agonists in patients with idiopathic dystonias and also tested the efficacy of dopamine receptor agonists in a mouse model of generalized dystonia. Our results suggest that dopamine receptor agonists were effective in some, but not all, patients tested. Further, the mixed D1/D2 dopamine receptor agonist apomorphine was apparently more effective than subtype selective D2 dopamine receptor agonists. However, rigorously controlled trials are still needed. In a mouse model of dystonia, a selective D1 dopamine receptor agonist was not effective while a selective D2 dopamine receptor had modest efficacy. However, when combined, these receptor-selective agonists acted synergistically to ameliorate the dystonia. Coactivation of D1 and D2 dopamine receptors using apomorphine or by increasing extracellular concentrations of dopamine was also effective. Thus, results from both clinical trials and tests in mice suggest that coactivation of D1 and D2 dopamine receptors may be an effective therapeutic strategy in some patients. These results support a reconsideration of dopamine receptors as targets for the treatment of dystonia, particularly because recent genetic and diagnostic advances may facilitate the identification of the subtypes of dystonia patients who respond and those who do not.


Assuntos
Agonistas de Dopamina/farmacologia , Distonia/tratamento farmacológico , Distonia/metabolismo , Animais , Monoaminas Biogênicas/metabolismo , Agonistas de Dopamina/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo
19.
Parkinsonism Relat Disord ; 46 Suppl 1: S62-S65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28784298

RESUMO

INTRODUCTION: The dystonias are a group of disorders defined by over-contraction of muscles leading to abnormal movements and postures. In recent years, enormous advances have been made in elucidating the neurobiological mechanisms responsible for many types of dystonia. METHODS: A literature review was conducted focusing on evolving concepts in dystonia genetics, anatomy and physiology. RESULTS: The list of genes related to dystonia has grown from a relatively small number to more than 100. Concepts regarding the neuroanatomical basis for dystonia have evolved from a relatively narrow focus on dysfunction of the basal ganglia to a broader motor network model in which the basal ganglia, cerebellum, cerebral cortex, and other brain regions play a key role. Physiologically, our understanding of the core abnormalities has matured; and numerous changes in neural signaling have been revealed in the basal ganglia, cerebellum and cortex. CONCLUSION: Although the dystonias share certain clinical aspects such as over-contraction of muscles leading to abnormal movements and postures, they actually comprise a very clinically and etiologically heterogeneous group of disorders. Understanding their neurobiological basis is important for devising rational therapies appropriately targeted for specific subgroups of patients.


Assuntos
Encéfalo/patologia , Distúrbios Distônicos , Distúrbios Distônicos/genética , Distúrbios Distônicos/patologia , Distúrbios Distônicos/fisiopatologia , Humanos , Chaperonas Moleculares/genética
20.
Psychopharmacology (Berl) ; 235(1): 23-35, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29085979

RESUMO

RATIONALE: Gambling disorder is a growing societal concern, as recognized by its recent classification as an addictive disorder in the DSM-5. Case reports have shown that disulfiram reduces gambling-related behavior in humans. OBJECTIVES: The purpose of the present study was to determine whether disulfiram affects performance on a rat gambling task, a rodent version of the Iowa gambling task in humans, and whether any changes were associated with alterations in dopamine and/or norepinephrine levels. METHODS: Rats were administered disulfiram prior to testing on the rat gambling task or prior to analysis of dopamine or norepinephrine levels in brain homogenates. Rats in the behavioral task were divided into two subgroups (optimal vs suboptimal) based on their baseline levels of performance in the rat gambling task. Rats in the optimal group chose the advantageous strategy more, and rats in the suboptimal group (a parallel to problem gambling) chose the disadvantageous strategy more. Rats were not divided into optimal or suboptimal groups prior to neurochemical analysis. RESULTS: Disulfiram administered 2 h, but not 30 min, before the task dose-dependently improved choice behavior in the rats with an initial disadvantageous "gambling-like" strategy, while having no effect on the rats employing an advantageous strategy. The behavioral effects of disulfiram were associated with increased striatal dopamine and decreased striatal norepinephrine. CONCLUSIONS: These findings suggest that combined actions on dopamine and norepinephrine may be a useful treatment for gambling disorders.


Assuntos
Dissuasores de Álcool/farmacologia , Catecolaminas/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Dissulfiram/farmacologia , Jogo de Azar/psicologia , Animais , Química Encefálica/efeitos dos fármacos , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Masculino , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Norepinefrina/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA