Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(6): 2830-2846, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301118

RESUMO

Biological sulfate reduction (BSR) represents a promising strategy for bioremediation of sulfate-rich waste streams, yet the impact of metabolic interactions on performance is largely unexplored. Here, genome-resolved metagenomics was used to characterize 17 microbial communities in reactors treating synthetic sulfate-contaminated solutions. Reactors were supplemented with lactate or acetate and a small amount of fermentable substrate. Of the 163 genomes representing all the abundant bacteria, 130 encode 321 NiFe and FeFe hydrogenases and all genomes of the 22 sulfate-reducing microorganisms (SRM) encode genes for H2 uptake. We observed lactate oxidation solely in the first packed bed reactor zone, with propionate and acetate oxidation in the middle and predominantly acetate oxidation in the effluent zone. The energetics of these reactions are very different, yet sulfate reduction kinetics were unaffected by the type of electron donor available. We hypothesize that the comparable rates, despite the typically slow growth of SRM on acetate, are a result of the consumption of H2 generated by fermentation. This is supported by the sustained performance of a predominantly acetate-supplemented stirred tank reactor dominated by diverse fermentative bacteria encoding FeFe hydrogenase genes and SRM capable of acetate and hydrogen consumption and CO2 assimilation. Thus, addition of fermentable substrates to stimulate syntrophic relationships may improve the performance of BSR reactors supplemented with inexpensive acetate.


Assuntos
Reatores Biológicos , Sulfatos , Fermentação , Reatores Biológicos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Acetatos/metabolismo , Lactatos/metabolismo
2.
Nucleic Acids Res ; 52(D1): D590-D596, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889041

RESUMO

CRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities. We present CasPEDIA (http://caspedia.org), the Cas Protein Effector Database of Information and Assessment, a curated encyclopedia that integrates enzymatic classification for hundreds of different Cas enzymes across 27 phylogenetic groups spanning the Cas9, Cas12 and Cas13 families, as well as evolutionarily related IscB and TnpB proteins. All enzymes in CasPEDIA were annotated with a standard workflow based on their primary nuclease activity, target requirements and guide-RNA design constraints. Our functional classification scheme, CasID, is described alongside current phylogenetic classification, allowing users to search related orthologs by enzymatic function and sequence similarity. CasPEDIA is a comprehensive data portal that summarizes and contextualizes enzymatic properties of widely used Cas enzymes, equipping users with valuable resources to foster biotechnological development. CasPEDIA complements phylogenetic Cas nomenclature and enables researchers to leverage the multi-faceted nucleic-acid targeting rules of diverse Class 2 Cas enzymes.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Bases de Dados Genéticas , Endodesoxirribonucleases , Sistemas CRISPR-Cas/genética , Filogenia , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/classificação , Proteínas Associadas a CRISPR/genética , Endodesoxirribonucleases/química , Endodesoxirribonucleases/classificação , Endodesoxirribonucleases/genética , Enciclopédias como Assunto
3.
Nat Commun ; 14(1): 4768, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553333

RESUMO

Metagenomic or metabarcoding data are often used to predict microbial interactions in complex communities, but these predictions are rarely explored experimentally. Here, we use an organism abundance correlation network to investigate factors that control community organization in mine tailings-derived laboratory microbial consortia grown under dozens of conditions. The network is overlaid with metagenomic information about functional capacities to generate testable hypotheses. We develop a metric to predict the importance of each node within its local network environments relative to correlated vitamin auxotrophs, and predict that a Variovorax species is a hub as an important source of thiamine. Quantification of thiamine during the growth of Variovorax in minimal media show high levels of thiamine production, up to 100 mg/L. A few of the correlated thiamine auxotrophs are predicted to produce pantothenate, which we show is required for growth of Variovorax, supporting that a subset of vitamin-dependent interactions are mutualistic. A Cryptococcus yeast produces the B-vitamin pantothenate, and co-culturing with Variovorax leads to a 90-130-fold fitness increase for both organisms. Our study demonstrates the predictive power of metagenome-informed, microbial consortia-based network analyses for identifying microbial interactions that underpin the structure and functioning of microbial communities.


Assuntos
Comamonadaceae , Microbiota , Metagenômica , Vitaminas , Microbiota/genética , Metagenoma/genética , Tiamina
4.
Nat Microbiol ; 7(12): 1967-1979, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316451

RESUMO

CRISPR-Cas13 proteins are RNA-guided RNA nucleases that defend against incoming RNA and DNA phages by binding to complementary target phage transcripts followed by general, non-specific RNA degradation. Here we analysed the defensive capabilities of LbuCas13a from Leptotrichia buccalis and found it to have robust antiviral activity unaffected by target phage gene essentiality, gene expression timing or target sequence location. Furthermore, we find LbuCas13a antiviral activity to be broadly effective against a wide range of phages by challenging LbuCas13a against nine E. coli phages from diverse phylogenetic groups. Leveraging the versatility and potency enabled by LbuCas13a targeting, we applied LbuCas13a towards broad-spectrum phage editing. Using a two-step phage-editing and enrichment method, we achieved seven markerless genome edits in three diverse phages with 100% efficiency, including edits as large as multi-gene deletions and as small as replacing a single codon. Cas13a can be applied as a generalizable tool for editing the most abundant and diverse biological entities on Earth.


Assuntos
Bacteriófagos , Edição de Genes , Bacteriófagos/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Filogenia , RNA/genética , Antivirais
5.
Front Bioeng Biotechnol ; 10: 897094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845424

RESUMO

Biological sulfate reduction (BSR) is an attractive approach for the bioremediation of sulfate-rich wastewater streams. Many sulfate-reducing microorganisms (SRM), which facilitate this process, have been well-studied in pure culture. However, the role of individual members of microbial communities within BSR bioreactors remains understudied. In this study we investigated the performance of two up-flow anaerobic packed bed reactors (UAPBRs) supplemented primarily with acetate and with lactate, respectively, during a hydraulic retention time (HRT) study set up to remediate sulfate-rich synthetic wastewater over the course of 1,000 + days. Plug-flow hydrodynamics led to a continuum of changing volumetric sulfate reduction rates (VSRRs), available electron donors, degrees of biomass retention and compositions of microbial communities throughout these reactors. Microbial communities throughout the successive zones of the reactors were resolved using 16S rRNA gene amplicon sequencing which allowed the association of features of performance with discrete microorganisms. The acetate UAPBR achieved a maximum VSRR of 23.2 mg.L-1. h-1 at a one-day HRT and a maximum sulfate conversion of the 1 g/L sulfate of 96% at a four-day HRT. The sulfate reduction reactions in this reactor could be described with a reaction order of 2.9, an important observation for optimisation and future scale-up. The lactate UAPBR achieved a 96% sulfate conversion at one-day HRT, corresponding with a VSRR of 40.1 mg.L-1. h-1. Lactate was supplied in this reactor at relatively low concentrations necessitating the subsequent use of propionate and acetate, by-products of lactate fermentation with acetate also a by-product of incomplete lactate oxidation, to achieve competitive performance. The consumption of these electron donors could be associated with specific SRM localised within biofilms of discrete zones. The sulfate reduction rates in the lactate UAPBR could be modelled as first-order reactions, indicating effective rates were conferred by these propionate- and acetate-oxidising SRM. Our results demonstrate how acetate, a low-cost substrate, can be used effectively despite low associated SRM growth rates, and that lactate, a more expensive substrate, can be used sparingly to achieve high VSRR and sulfate conversions. We further identified the preferred environment of additional microorganisms to inform how these microorganisms could be enriched or diminished in BSR reactors.

6.
Res Microbiol ; 169(10): 543-551, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30308248

RESUMO

Biological sulphate reduction (BSR) is a promising low-cost treatment of acid rock drainage effluents. In this paper, the system performance and microbial ecology of a lactate supplemented BSR up-flow anaerobic packed bed reactor (UAPBR) are evaluated across reactor height and compared to a continuous stirred tank reactor (CSTR). The biomass concentrations of planktonic and biofilm communities were quantified and subsequently characterised by 16S rRNA gene amplicon sequencing. The defined microbial communities were shown to correlate with differing availability of lactate, volatile fatty acids produced from lactate degradation and sulphate concentration. The UAPBR was able to achieve near complete sulphate conversion at a 4-day hydraulic residence time (HRT) at a sulphate feed concentration of 10.41 mM (1 g/L). The high volumetric sulphate reduction rate of 0.184 mM/L.h achieved in the first third of the reactor was attributed to OTUs present in the planktonic and biofilm communities. While the scavenging of sulphate within the final third of the UAPBR was attributed to an acetate oxidising genus of SRB which was not detected in the lactate-fed CSTR. The detailed analyses of the microbial communities throughout the UAPBR and CSTR contribute to the growing understanding of the impact of the microbial communities of BSR reactors on system performance.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Reatores Biológicos/microbiologia , RNA Ribossômico 16S/genética , Compostos de Enxofre/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/isolamento & purificação , Biodegradação Ambiental , Biodiversidade , DNA Bacteriano/genética , Genoma Bacteriano , Metagenômica , Oxirredução , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA