Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5643, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024527

RESUMO

Synchrotron X-ray computed tomography (XCT) has been increasingly applied to study the in vivo dynamics of root growth and rhizosphere processes. However, minimizing radiation-induced damage to root growth warrants further investigation. Our objective was to develop a robust approach for modeling and evaluating ways to reduce synchrotron X-ray dose effects on root growth during in vivo imaging. Wheat roots growing in soil were exposed to X-rays during XCT experiments resolved in space (3D) plus time (4D). The dose rate and cumulative absorbed dose in roots were modelled using the Monte Carlo code FLUKA for different experimental conditions of polychromatic and quasi-monochromatic X-ray beam configurations. The most impactful factors affecting damage to roots were incident X-ray energy spectrum, stored current in the accelerator machine, position of the root in the soil, and possibly the number of exposures during the 4D XCT experiments. Our results imply that radiation dose during in vivo imaging of plant roots can be diminished by using monochromatic radiation at the highest energy suitable for a given sample thickness and field of view, and by controlling the rotation axis of off-centered roots to increase attenuation of radiation by the soil matrix.


Assuntos
Solo , Síncrotrons , Raios X , Método de Monte Carlo , Radiografia , Imagens de Fantasmas
2.
Sci Total Environ ; 864: 161009, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549526

RESUMO

Mining is an important component of the Brazilian economy. However, it may also contribute to environmental problems such as the pollution of soils with zinc and other potentially toxic metals. Our objective was to evaluate changes in the chemical speciation and mobility of Zn in a soil amended with phosphate. Soil samples were collected from a deactivated mining area in the state of Minas Gerais, Brazil, and amended with NH4H2PO4 saturated with deionized water to 70 % of maximum water retention and incubated at 25 ± 2 °C in open containers for 60 days. The soil was chemically and mineralogically characterized, and sequential extraction, desorption kinetics, and speciation were carried out using synchrotron bulk-sample and micro-X-ray Absorption Near-Edge Structure (XANES/µ-XANES) spectroscopy at the Zn K-edge, and X-ray fluorescence microprobe analysis (µ-XRF). The combination of µ-XRF and µ-XANES techniques made it possible to identify Zn hotspots in the main species formed after phosphate remediation. The best fit combination for bulk XANES and µ-XANES was observed in Zn-montmorillonite, Zn-kerolite, Zn-ferrihydrite, and gahnite. In the course of phosphate treatment, gahnite, Zn layered double hydroxides (Zn-LDH), Zn3(PO4), and ZnO were identified by bulk XANES, while Zn-ferrihydrite, Zn-montmorillonite, and scholzite were identified by µ-XANES. Zinc in the phosphate-amended soil had the strongest partial correlations (r' > 0.05) with Ni, Co, Fe, Cr, Mn, Si, P, Cd, Pb, and Cd, while the unamended soil showed the strongest correlation with Cu, Pb, Fe, and Si. The application of NH4H2PO4 altered Zn speciation and favored an increase in Zn desorption. The most available Zn contents after phosphate amendment were correlated with the release of exchangeable Zn fractions, associated with carbonate and organic matter.

3.
Sci Total Environ ; 820: 153153, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35041946

RESUMO

Removing phosphorus (P) from water and wastewater is essential for preventing eutrophication and protecting environmental quality. Lanthanum [La(III)]-containing materials can effectively and selectively remove orthophosphate (PO4) from aqueous systems, but there remains a need to better understand the underlying mechanism of PO4 removal. Our objectives were to 1) identify the mechanism of PO4 removal by La-containing materials and 2) evaluate the ability of a new material, La2(CO3)3(s), to remove PO4 from different aqueous matrices, including municipal wastewater. We determined the dominant mechanism of PO4 removal by comparing geochemical simulations with equilibrium data from batch experiments and analyzing reaction products by X-ray diffraction and scanning transmission electron microscopy with energy dispersive spectroscopy. Geochemical simulations of aqueous systems containing PO4 and La-containing materials predicted that PO4 removal occurs via precipitation of poorly soluble LaPO4(s). Results from batch experiments agreed with those obtained from geochemical simulations, and mineralogical characterization of the reaction products were consistent with PO4 removal occurring primarily by precipitation of LaPO4(s). Between pH 1.5 and 12.9, La2(CO3)3(s) selectively removed PO4 over other anions from different aqueous matrices, including treated wastewater. However, the rate of PO4 removal decreased with increasing solution pH. In comparison to other solids, such as La(OH)3(s), La2(CO3)3(s) exhibits a relatively low solubility, particularly under slightly acidic conditions. Consequently, release of La3+ into the environment can be minimized when La2(CO3)3(s) is deployed for PO4 sequestration.


Assuntos
Lantânio , Poluentes Químicos da Água , Adsorção , Lantânio/química , Fosfatos/química , Água
4.
Waste Manag ; 131: 249-257, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34174561

RESUMO

Selecting pyrolysis parameters for recycling P-rich and hazardous biowastes, such as bones, into fertilizers is still a challenge. Our objective was to improve pyrolysis procedures of pig bones for the production of P fertilizers. Bone chars were produced by pyrolysis at 400, 550, or 800 °C with no gas addition; 550 and 800 °C under N2; 800 °C under steam flux, using calcination at 800 °C as control treatment. Synchrotron-based X-ray diffraction and X-ray absorption near edge structure spectroscopy at the P and Ca K- and L-edges showed that these bone chars were largely composed of hydroxyapatite. Hydroxyapatite crystallization was inhibited by pyrolysis conducted in the absence of oxygen at 400, 550, or 800 °C, either under no gas or under N2 flux. The clogging of pores by lack of organic compounds removal was hypothesized to cause low surface area of 400 °C bone char, resulting in a fertilizer with citric-acid soluble P as low as calcination, while 550 and 800 °C bone chars obtained in absence of oxygen showed greater porosity, surface area, and citric acid-soluble P than steamed or calcined samples at 800 °C. Although extractable phosphate in water and neutral-ammonium-citrate showed trends comparable to those from citric acid, it was negligible for all heated materials. Since it is possible to produce bone chars with different chemical, physical and crystallographic properties by managing pyrolysis conditions, bone chars can be designed to increase their suitability as P fertilizers for different purposes, such as high solubility or slow P release.


Assuntos
Fertilizantes , Pirólise , Animais , Carvão Vegetal , Durapatita , Reciclagem , Suínos
5.
J Hazard Mater ; 408: 124813, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385722

RESUMO

Mapping of leaves of hyperaccumulators can provide insights into the mechanisms these species utilize to accumulate high metal concentrations. We used synchrotron-based X-ray fluorescence (SXRF) to perform Zn and Ni imaging in leaves of different ages of Noccaea caerulescens. A mature leaf of the related non-hyperaccumulator Thlaspi arvense was also imaged. The concentrations of Zn, Ni, Co, and Cr in N. caerulescens grown on an ultramafic soil were 9-, 10-, 12-, and 3-fold higher than T. arvense. N. caerulescens showed an exceptional ability to accumulate Zn from the soil, posing a bioconcentration factor of 6.7. T. arvense had Zn and Ni distributed uniformly in the leaf blade with doubling fluorescence counts in the tip and margins, suggesting a strategy to excrete metals and avoid toxicity. On the other hand, N. caerulescens displayed distinctly different Zn and Ni accumulation patterns, regardless of the age or metal concentration in the leaves. Zinc was mainly distributed in the cells surrounding the central and secondary veins. Nickel accumulated in the margins and tips of the leaf blade. Given the time required to image large leaves in synchrotron facilities, small leaves can be used to represent the leaf distribution of Zn and Ni in N. caerulescens.


Assuntos
Folhas de Planta , Síncrotrons , Cádmio , Fluorescência , Raios X , Zinco
6.
J Hazard Mater ; 398: 122992, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512459

RESUMO

The aim of this study was to show the potential of citric acid in increasing the concentration of Ni, Zn, Co, Cr, Mn and Fe in leaves of the hyperaccumulator Noccaea caerulescens. Synchrotron x-ray fluorescence (µ-XRF) images were collected to assess the distribution of metals in leaves. Applying citric acid (20 mmol kg-1) to soil increased in 14-, 10-, 7-, 2- and 1.4- fold the concentration of Mn, Fe, Co, Ni, and Cr, respectively, compared to the control. The µ-XRF imaging revealed that Ni and Zn were not spatially correlated across the leaf. We observed a clear partitioning of Zn between veins and surrounding leaf cells while Ni was more evenly distributed between veins and leaf blade. The accumulation of metals in citric acid treated plants did not change the Ni and Zn distribution pattern in leaves but altered the Mn distribution. It seems that Mn reached toxic concentrations in leaves and we hypothesize that a mechanism driven by transpiration through the xylem was used to excrete the metal. Our results show that citric acid can enhance metal accumulation by N. caerulescens and have impact for soil remediation by either decreasing the time for clean up or increasing the access to non-labile pools of metals in soil.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Cítrico , Folhas de Planta/química , Solo , Poluentes do Solo/análise , Zinco
7.
Environ Pollut ; 260: 114025, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32004964

RESUMO

Odontarrhena muralis is one of the most promissing plant species for Ni phytomining, and soil amendments can further increase its Ni phytoextraction ability. Here we investigated whether Ni phytomining/phytoremediation using this Ni hyperaccumulator can benefit from applying citric acid to a serpentine soil that is naturally enriched in Ni (>1000 mg kg-1). Synchrotron micro X-ray fluorescence (µ-SXRF) was used to image Ni and other metal distributions in whole fresh leaves of O. muralis. Leaf Ni accumulation in plants grown on citric acid-amended soil increased up to 55% while Co, Cr, Fe, Mn, and Zn concentrations were 4-, 14-, 6-, 7- and 1.3-fold higher than the control treatment. O. muralis presented high bioconcentration factors (leaf to soil concentration ratio) to Ni and Zn whereas Cr was seemingly excluded from uptake. The µ-SXRF images showed a uniform distribution of Ni, preferential localization of Co in the leaf tip, and clear concentration of Mn in the base of trichomes. The citric acid treatments strongly increased the Co fluoerescence intensity in the leaf tip and altered the spatial distribution of Mn across the leaf, but there was no difference in Ni fluorescence counts between the trichome-base region and the bulk leaf. Our data from a serpentine soil suggests that citrate treatment enhances Ni uptake, but Co is excreted from leaves even in low leaf concentrations, which can make Co phytoming using O. muralis unfeasible in natural serpentine soils.


Assuntos
Biodegradação Ambiental , Brassicaceae , Metais/metabolismo , Poluentes do Solo , Ácido Cítrico , Metais Pesados , Níquel , Solo
8.
J Synchrotron Radiat ; 26(Pt 6): 1967-1979, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721742

RESUMO

Soils regulate the environmental impacts of trace elements, but direct measurements of reaction mechanisms in these complex, multi-component systems can be challenging. The objective of this work was to develop approaches for assessing effects of co-localized geochemical matrix elements on the accumulation and chemical speciation of arsenate applied to a soil matrix. Synchrotron X-ray fluorescence microprobe (µ-XRF) images collected across 100 µm × 100 µm and 10 µm × 10 µm regions of a naturally weathered soil sand-grain coating before and after treatment with As(V) solution showed strong positive partial correlations (r' = 0.77 and 0.64, respectively) between accumulated As and soil Fe, with weaker partial correlations (r' > 0.1) between As and Ca, and As and Zn in the larger image. Spatial and non-spatial regression models revealed a dominant contribution of Fe and minor contributions of Ca and Ti in predicting accumulated As, depending on the size of the sample area analyzed. Time-of-flight secondary ion mass spectrometry analysis of an area of the sand grain showed a significant correlation (r = 0.51) between Fe and Al, so effects of Fe versus Al (hydr)oxides on accumulated As could not be separated. Fitting results from 25 As K-edge microscale X-ray absorption near-edge structure (µ-XANES) spectra collected across a separate 10 µm × 10 µm region showed ∼60% variation in proportions of Fe(III) and Al(III)-bound As(V) standards, and fits to µ-XANES spectra collected across the 100 µm × 100 µm region were more variable. Consistent with insights from studies on model systems, the results obtained here indicate a dominance of Fe and possibly Al (hydr)oxides in controlling As(V) accumulation within microsites of the soil matrix analyzed, but the analyses inferred minor augmentation from co-localized Ti, Ca and possibly Zn.

9.
Environ Toxicol Chem ; 37(3): 903-913, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29095518

RESUMO

Benthic periphytic biofilms are important food sources at the base of aquatic ecosystems. These biofilms also sit at the interface of oxic waters and hypoxic sediments, and can be influenced by or influence trace element speciation. In the present study, we compared arsenic (As) enrichment in periphyton exposed to arsenate (As[V]) or arsenite (As[III]) (20 µg/L, static renewal, 7 d), and we found similar accumulation patterns of total As (101 ± 27 and 88 ± 22 mg kg-1 dry wt, respectively). Periphyton As was 6281- and 6684-fold higher than their aqueous exposures and occurred primarily as As(V). When these biofilms were fed to larval mayflies, similar total As tissue concentrations (13.9 and 14.6 mg kg-1 dry wt, respectively) were observed, revealing significant biodilution (∼ 10% of their dietary concentrations). Finally, we investigated the influence of aeration and periphyton presence on As speciation in solutions and solid phases treated with As(III). Predominantly As(III) solutions were slowly oxidized over a 7-d time period, in the absence of periphyton, and aeration did not strongly affect oxidation rates. However, in the presence of periphyton, solution and solid-phase analyses (by microscale x-ray absorption spectroscopy) showed rapid As(III) oxidation to As(V) and an increasing proportion of organo-As forming over time. Thus periphyton plays several roles in As environmental behavior: 1) decreasing total dissolved As concentrations via abiotic and biotic accumulation, 2) rapidly oxidizing As(III) to As(V), 3) effluxing organo-As forms into solution, and 4) limiting trophic transfer to aquatic grazers. Environ Toxicol Chem 2018;37:903-913. © 2017 SETAC.


Assuntos
Arsênio/análise , Perifíton , Aerobiose , Animais , Ephemeroptera/fisiologia , Larva/fisiologia , Soluções , Poluentes Químicos da Água/análise , Espectroscopia por Absorção de Raios X
10.
Sci Total Environ ; 609: 466-475, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28755596

RESUMO

The effect of periphyton propagation in paddy fields on phosphorus biogeochemical cycling has received little attention. In this phytotron study, inorganic phosphorus (Pi) accumulation by periphyton was investigated for varying inputs of calcium [Ca(II)] or ferrous­iron [Fe(II)], and lighting conditions. Results indicated that additions of Ca(II) or Fe(II) enhanced abiotic accumulation of Pi by up to 16 times, and decreased solution Pi concentration by up to 50%, especially under light condition. The enhanced Pi accumulation into periphyton intensified with increasing Pi concentration, and Pi accumulation showed a positive linear relationship with Ca or Fe accumulation. Abiotic accumulation of Pi induced by Ca(II) was mainly through Ca-phosphate precipitation, and co-precipitation of P with carbonates at pH>8. Accumulation with added Fe(II) was mainly considered to be through Fe(III) phosphate precipitation coupled with adsorption of Pi by ferric hydroxides. Moreover, Fe(II) was more effective than Ca(II) in promoting abiotic accumulation of Pi by periphyton. Our results indicate the potential for controlling environmental factors to enhance the role of periphyton in biogeochemical cycling and P-use efficiency in paddy rice fields and to reduce P discharged to neighboring water bodies.

11.
Environ Toxicol Chem ; 36(11): 2991-2996, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28543800

RESUMO

To determine whether the bioavailability of trace elements derived from coal ash leachates varies with the geochemical conditions associated with their formation, we quantified periphyton bioaccumulation and subsequent trophic transfer to the mayfly Neocloeon triangulifer. Oxic ash incubations favored periphyton uptake of arsenic, selenium, strontium, and manganese, whereas anoxic incubations favored periphyton uptake of uranium. Mayfly enrichment was strongest for selenium, whereas biodilution was observed for strontium, uranium, and arsenic. Environ Toxicol Chem 2017;36:2991-2996. © 2017 SETAC.


Assuntos
Cinza de Carvão/química , Cadeia Alimentar , Perifíton , Oligoelementos/análise , Animais , Reatores Biológicos , Ephemeroptera/metabolismo , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/toxicidade
12.
J Environ Qual ; 46(6): 1206-1214, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29293850

RESUMO

Chemical speciation of soil cadmium (Cd) dictates its mobility and potential toxicity in the environment. Our objective was to compare temporal changes in speciation of Cd(II) reacted with samples from six Brazilian soils having varying Cd(II) sorption capacities. Cadmium L-edge X-ray absorption near edge structure (XANES) analysis showed there were short-term changes in speciation after reaction with 4.45 mmol Cd kg for 0.5 and 6 h. Chemical fractionation evaluated changes in Cd extractability after reaction with 89 µmol Cd kg for up to 4 mo. The XANES spectral fits suggested that Cd(II) bound with organic matter was a dominant species in all samples, along with Cd(II) bound with iron and aluminum oxides or montmorillonite. In several samples, CdCl apparently precipitated from aqueous Cd(II) during drying. The XANES spectral fits typically showed <25% change in speciation between 0.5 and 6 h of reaction, and chemical fractionation showed significant ( < 0.05) temporal changes in Cd extractability over time in two samples. Our results suggest that Cd(II) discharged into these soils, such as that occurring as a release into the environment, would bind with soil organic matter and oxide minerals or remain dissolved, with little change in speciation in the months following release.


Assuntos
Cádmio/química , Poluentes do Solo/química , Fracionamento Químico , Solo , Espectroscopia por Absorção de Raios X
13.
J Environ Qual ; 46(6): 1190-1197, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29293859

RESUMO

Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ∼26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-µm × 45-µm area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (µ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the µ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the µ-XANES fits, and a fit to the sum of µ-XANES spectra included four of the standards. These results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.


Assuntos
Fósforo/análise , Solo/química , Espectroscopia por Absorção de Raios X , Agricultura , Poluentes do Solo
14.
J Environ Qual ; 45(6): 1988-1997, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27898793

RESUMO

The development of efficient fertilizers with a diminished environmental footprint will help meet the increasing demand for food and nutrients by a growing global population. Our objective was to evaluate whether an acidic mine waste (AMW) could be used beneficially by reacting it with sparingly soluble phosphate rocks (PRs) to produce more soluble P fertilizer materials. Three PRs from Brazil and Peru were reacted with different concentrations of AMW. Changes in mineralogy and P species were determined using a combination of X-ray diffraction and phosphorus K-edge XANES spectroscopy, in addition to extractable P concentrations. Increasing the AMW concentration typically increased extractable P. X-ray diffraction data showed transformation of apatite to other species when PRs were reacted with AMW at ≥50% (v/v) in water, with gypsum or anhydrite forming at AMW concentrations as low as 12.5%. Linear combination fitting analysis of X-ray absorption near edge structure spectra also indicated a progressive transformation of apatite to noncrystalline Fe(III)-phosphate and more soluble Ca-phosphates with increasing AMW concentration. Because this AMW is costly to dispose of, reacting it with PR to produce a higher-grade phosphate fertilizer material could decrease the environmental impacts of the AMW and diminish the consumption of pure acids in conventional P fertilizer production.


Assuntos
Fosfatos/química , Eliminação de Resíduos Líquidos , Compostos Férricos , Fertilizantes , Concentração de Íons de Hidrogênio , Fósforo , Água
15.
Environ Sci Technol ; 50(18): 9963-71, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27570123

RESUMO

Manganese (Mn) contamination of well water is recognized as an environmental health concern. In the southeastern Piedmont region of the United States, well water Mn concentrations can be >2 orders of magnitude above health limits, but the specific sources and causes of elevated Mn in groundwater are generally unknown. Here, using field, laboratory, spectroscopic, and geospatial analyses, we propose that natural pedogenetic and hydrogeochemical processes couple to export Mn from the near-surface to fractured-bedrock aquifers within the Piedmont. Dissolved Mn concentrations are greatest just below the water table and decrease with depth. Solid-phase concentration, chemical extraction, and X-ray absorption spectroscopy data show that secondary Mn oxides accumulate near the water table within the chemically weathering saprolite, whereas less-reactive, primary Mn-bearing minerals dominate Mn speciation within the physically weathered transition zone and bedrock. Mass-balance calculations indicate soil weathering has depleted over 40% of the original solid-phase Mn from the near-surface, and hydrologic gradients provide a driving force for downward delivery of Mn. Overall, we estimate that >1 million people in the southeastern Piedmont consume well water containing Mn at concentrations exceeding recommended standards, and collectively, these results suggest that integrated soil-bedrock-system analyses are needed to predict and manage Mn in drinking-water wells.


Assuntos
Manganês , Solo , Monitoramento Ambiental , Água Subterrânea/química , Água , Poluentes Químicos da Água
16.
Sci Total Environ ; 566-567: 1410-1419, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27312272

RESUMO

The soil chemistry of phosphorus (P) is important for understanding the processes governing plant availability as well as the risk of environmental losses of P. The objective of this research was to investigate both the speciation and the pH-dependent solubility patterns of P in clayey agricultural soils in relation to soil mineralogy and fertilization history. The study focused on soil samples from six fields that were subjected to different P fertilization regimes for periods of 45 to 57years. Soil P speciation was analyzed by P K-edge XANES spectroscopy and chemical fractionation, sorption isotherms were constructed, and dissolved P was measured as a function of pH. The XANES fitting results showed that organic P and P adsorbed to Fe and Al (hydr)oxides were common P constituents in all soils. Calcium phosphates were identified in five of six soil samples. The XANES results also indicated an increase in P adsorbed to Al and to a lesser extent Fe (hydr)oxides as a result of fertilization. Moreover, the fluorescence intensity from the P K-edge XANES analysis was most strongly correlated with HCl-digestible P (r=0.81***). Consistent with the XANES analysis, laboratory sorption isotherm models showed that the Freundlich sorption coefficient (KF) was most closely related to oxalate-extractable Al. Greater proportions of Ca phosphate in two of the heavily fertilized soils in combination with enhanced PO4 solubilization upon sample acidification indicated neoformation of Ca-phosphate precipitates. The results for the unfertilized soil samples generally showed a minimum in dissolved PO4 between pH6.5 and 7.5, with increases particularly at lower pH. This behavior can be explained either by the dissolution of Al-hydroxide-type sorbents or Ca phosphates at lower pH. In fertilized soils, there was no consistent trend in pH-dependent solubilization of P, with a complex relationship to solid-phase speciation. To conclude, inorganic P species changed most dynamically in agricultural clay soils over a period of several decades, and the role of pH in the solubilization of P depended mainly on P fertilization history and the content of reactive Ca phosphates.

17.
Environ Sci Technol ; 50(12): 6556-64, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27223406

RESUMO

Periphyton is an important food source at the base of freshwater ecosystems that tends to bioconcentrate trace elements making them trophically available. The potential for arsenic-a trace element of particular concern due to its widespread occurrence, toxicity, and carcinogenicity-to bioconcentrate in periphyton and thus be available to benthic grazers is less well characterized. To better understand arsenate bioaccumulation dynamics in lotic food webs, we used a radiotracer approach to characterize accumulation in periphyton and subsequent trophic transfer to benthic grazers. Periphyton bioconcentrated As between 3,200-9,700-fold (dry weight) over 8 days without reaching steady state, suggesting that periphyton is a major sink for arsenate. However, As-enriched periphyton as a food source for the mayfly Neocloeon triangulifer resulted in negligible As accumulation in a full lifecycle exposure. Additional studies estimate dietary assimilation efficiency in several primary consumers ranging from 22% in the mayfly N. triangulifer to 75% in the mayfly Isonychia sp. X-ray fluorescence mapping revealed that As was predominantly associated with iron oxides in periphyton. We speculate that As adsorption to Fe in periphyton may play a role in reducing dietary bioavailability. Together, these results suggest that trophic movement of As in lotic food webs is relatively low, though species differences in bioaccumulation patterns are important.


Assuntos
Cadeia Alimentar , Insetos , Animais , Arseniatos , Ecossistema , Água Doce
18.
Integr Environ Assess Manag ; 12(2): 353-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26033746

RESUMO

Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future.


Assuntos
Irrigação Agrícola , Cinza de Carvão/análise , Monitoramento Ambiental , Poluição por Petróleo , Poluentes do Solo/análise , Oligoelementos/análise , North Carolina , Virginia
19.
Int J Phytoremediation ; 15(9): 844-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23819280

RESUMO

Rhizoremediation of petroleum contaminants is a phytoremediation process that depends on interactions among plants, microbes, and soils. Trees and grasses are commonly used for phytoremediation, with trees typically being chosen for remediation of BTEX while grasses are more commonly used for remediation of PAHs and total petroleum hydrocarbons. The objective of this review was to compare the effectiveness of trees and grasses for rhizoremediation of hydrocarbons and address the advantages of each vegetation type. Grasses were more heavily represented in the literature and therefore demonstrated a wider range of effectiveness. However, the greater biomass and depth of tree roots may have greater potential for promoting environmental conditions that can improve rhizoremediation, such as increased metabolizable organic carbon, oxygen, and water. Overall, we found little difference between grasses and trees with respect to average reduction of hydrocarbons for studies that compared planted treatments with a control. Additional detailed investigations into plant attributes that most influence hydrocarbon degradation rates should provide data needed to determine the potential for rhizoremediation with trees or grasses for a given site and identify which plant characteristics are most important.


Assuntos
Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Poaceae/metabolismo , Poluentes do Solo/metabolismo , Árvores/metabolismo , Biodegradação Ambiental , Biomassa , Raízes de Plantas/metabolismo , Rizosfera , Solo , Microbiologia do Solo
20.
Environ Sci Technol ; 47(14): 7965-73, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23772963

RESUMO

Little is known about the bioaccumulation dynamics, biotransformation processes, or subsequent toxicity to consumers of dissolved selenite (SeO3) versus selenate (SeO4) uptake into aquatic primary producer communities. To address these data gaps, we examined SeO3 and SeO4 bioconcentration into complex freshwater periphyton communities under static and static-renewal conditions. Further, we explored periphyton biotransformation of Se species using X-ray absorption near edge structure (XANES) spectroscopy analysis and changes in the periphyton associated microbial consortium using denaturing gradient gel electrophoresis (DGGE). Last, we fed differentially treated periphyton to the mayfly Centroptilum triangulifer in full life cycle exposures to assess toxicity. Selenite exposed periphyton readily bioconcentrated Se while, in contrast, initial periphyton uptake of SeO4 was negligible, but over time periphyton [Se] increased steadily in conjunction with the formation of dissolved SeO3. XANES analyses revealed that both SeO3 and SeO4 treated periphyton biotransformed Se similarly with speciation dominated by organo-selenide (∼61%). Mayfly survival, secondary production, and time to emergence were similar in both SeO3 and SeO4 treated periphyton exposures with significant adverse effects at 12.8 µg g(-1) ((d.w.) secondary production) and 36 µg g(-1) ((d.w.) survival and development time). Overall, dissolved selenium speciation, residence time, and organisms at the base of aquatic food webs appear to be the principal determinants of Se bioaccumulation and toxicity.


Assuntos
Insetos/efeitos dos fármacos , Ácido Selênico/toxicidade , Ácido Selenioso/toxicidade , Animais , Insetos/metabolismo , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA