Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 11(10): 1833-50, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27583644

RESUMO

Progress toward finding a cure for muscle diseases has been slow because of the absence of relevant cellular models and the lack of a reliable source of muscle progenitors for biomedical investigation. Here we report an optimized serum-free differentiation protocol to efficiently produce striated, millimeter-long muscle fibers together with satellite-like cells from human pluripotent stem cells (hPSCs) in vitro. By mimicking key signaling events leading to muscle formation in the embryo, in particular the dual modulation of Wnt and bone morphogenetic protein (BMP) pathway signaling, this directed differentiation protocol avoids the requirement for genetic modifications or cell sorting. Robust myogenesis can be achieved in vitro within 1 month by personnel experienced in hPSC culture. The differentiating culture can be subcultured to produce large amounts of myogenic progenitors amenable to numerous downstream applications. Beyond the study of myogenesis, this differentiation method offers an attractive platform for the development of relevant in vitro models of muscle dystrophies and drug screening strategies, as well as providing a source of cells for tissue engineering and cell therapy approaches.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Fibras Musculares Esqueléticas/citologia , Células-Tronco Pluripotentes/citologia , Células Satélites de Músculo Esquelético/citologia , Linhagem Celular , Humanos , Desenvolvimento Muscular
2.
Nat Biotechnol ; 33(9): 962-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26237517

RESUMO

During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We show that primary and secondary skeletal myogenesis can be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells. The mouse ES cells also differentiate into Pax7(+) cells with satellite cell characteristics, including the ability to form dystrophin(+) fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibit an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD.


Assuntos
Diferenciação Celular , Modelos Animais de Doenças , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/patologia , Células-Tronco Pluripotentes/patologia , Animais , Células Cultivadas , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA