Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1018530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284465

RESUMO

The monovalent cations sodium and potassium are crucial for the proper functioning of excitable cells, but, in addition, other monovalent alkali metal ions such as cesium and lithium can also affect neuronal physiology. For instance, there have been recent reports of adverse effects resulting from self-administered high concentrations of cesium in disease conditions, prompting the Food and Drug Administration (FDA) to issue an alert concerning cesium chloride. As we recently found that the monovalent cation NH4+ activates glycine receptors (GlyRs), we investigated the effects of alkali metal ions on the function of the GlyR, which belongs to one of the most widely distributed neurotransmitter receptors in the peripheral and central nervous systems. Whole-cell voltage clamp electrophysiology was performed with HEK293T cells transiently expressing different splice and RNA-edited variants of GlyR α2 and α3 homopentameric channels. By examining the influence of various milli- and sub-millimolar concentrations of lithium, sodium, potassium, and cesium on these GlyRs in comparison to its natural ligand glycine (0.1 mM), we could show that cesium activates GlyRs in a concentration- and post-transcriptional-dependent way. Additionally, we conducted atomistic molecular dynamic simulations on GlyR α3 embedded in a membrane bilayer with potassium and cesium, respectively. The simulations revealed slightly different GlyR-ion binding profiles for potassium and cesium, identifying interactions near the glycine binding pocket (potassium and cesium) and close to the RNA-edited site (cesium) in the extracellular GlyR domain. Together, these findings show that cesium acts as an agonist of GlyRs.

2.
Front Mol Neurosci ; 16: 1166900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181649

RESUMO

Introduction: The cerebellum is organized into functional regions each dedicated to process different motor or sensory inputs for controlling different locomotor behaviors. This functional regionalization is prominent in the evolutionary conserved single-cell layered Purkinje cell (PC) population. Fragmented gene expression domains suggest a genetic organization of PC layer regionalization during cerebellum development. However, the establishment of such functionally specific domains during PC differentiation remained elusive. Methods and results: We show the progressive emergence of functional regionalization of PCs from broad responses to spatially restricted regions in zebrafish by means of in vivo Ca2+-imaging during stereotypic locomotive behavior. Moreover, we reveal that formation of new dendritic spines during cerebellar development using in vivo imaging parallels the time course of functional domain development. Pharmacological as well as cell-type specific optogenetic inhibition of PC neuronal activity results in reduced PC dendritic spine density and an altered stagnant pattern of functional domain formation in the PC layer. Discussion: Hence, our study suggests that functional regionalization of the PC layer is driven by physiological activity of maturing PCs themselves.

3.
J Physiol ; 600(15): 3549-3565, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35770953

RESUMO

Relay neurons of the dorsal lateral geniculate nucleus (dLGN) receive inputs from retinal ganglion cells via retinogeniculate synapses. These connections undergo pruning in the first 2 weeks after eye opening. The remaining connections are strengthened several-fold by the insertion of AMPA receptors (AMPARs) into weak or silent synapses. In this study, we found that the AMPAR auxiliary subunit CKAMP44 is required for receptor insertion and function of retinogeniculate synapses during development. Genetic deletion of CKAMP44 resulted in decreased synaptic strength and a higher number of silent synapses in young (P9-11) mice. Recovery from desensitisation of AMPARs was faster in CKAMP44 knockout (CKAMP44-/- ) than in wild-type mice. Moreover, loss of CKAMP44 increased the probability of inducing plateau potentials, which are known to be important for eye-specific input segregation and retinogeniculate synapse maturation. The anatomy of relay neurons in the dLGN was changed in young CKAMP44-/- mice showing a transient increase in dendritic branching that normalised during later development (P26-33). Interestingly, input segregation in young CKAMP44-/- mice was not affected when compared to wild-type mice. These results demonstrate that CKAMP44 promotes maturation and modulates function of retinogeniculate synapses during early development of the visual system without affecting input segregation. KEY POINTS: Expression of CKAMP44 starts early during development of the dorsal lateral geniculate nucleus (dLGN) and remains stable in relay neurons and interneurons. Genetic deletion of CKAMP44 decreases synaptic strength and increases silent synapse number in dLGN relay neurons; increases the rate of recovery from desensitisation of AMPA receptors in dLGN relay neurons; and reduces synaptic short-term depression in retinogeniculate synapses. The probability of inducing plateau potentials is elevated in relay neurons of CKAMP44-/- mice. Eye-specific input segregation is unaffected in the dLGN of CKAMP44-/- mice. Deletion of CKAMP44 mildly affects dendritic arborisation of relay neurons in the dLGN.


Assuntos
Corpos Geniculados , Proteínas do Tecido Nervoso/metabolismo , Receptores de AMPA , Animais , Corpos Geniculados/fisiologia , Camundongos , Receptores de AMPA/genética , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Vias Visuais/fisiologia
4.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587822

RESUMO

Evidence is emerging that immune responses not only play a part in the central nervous system (CNS) in diseases but may also be relevant for healthy conditions. We discovered a major role for the interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signaling pathway in synaptic processes, as indicated by transcriptome analysis in IL-4Rα-deficient mice and human neurons with/without IL-4 treatment. Moreover, IL-4Rα is expressed presynaptically, and locally available IL-4 regulates synaptic transmission. We found reduced synaptic vesicle pools, altered postsynaptic currents, and a higher excitatory drive in cortical networks of IL-4Rα-deficient neurons. Acute effects of IL-4 treatment on postsynaptic currents in wild-type neurons were mediated via PKCγ signaling release and led to increased inhibitory activity supporting the findings in IL-4Rα-deficient neurons. In fact, the deficiency of IL-4Rα resulted in increased network activity in vivo, accompanied by altered exploration and anxiety-related learning behavior; general learning and memory was unchanged. In conclusion, neuronal IL-4Rα and its presynaptic prevalence appear relevant for maintaining homeostasis of CNS synaptic function.


Assuntos
Interleucina-4 , Receptores de Interleucina-4 , Animais , Interleucina-4/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptores de Interleucina-4/metabolismo , Transdução de Sinais
5.
Hum Mol Genet ; 31(6): 901-913, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34617111

RESUMO

Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition is linked to epilepsy. Gephyrin (Geph) is the principal scaffolding protein at inhibitory synapses and is essential for postsynaptic clustering of glycine (GlyRs) and GABA type A receptors. Consequently, gephyrin is crucial for maintaining the relationship between excitation and inhibition in normal brain function and mutations in the gephyrin gene (GPHN) are associated with neurodevelopmental disorders and epilepsy. We identified bi-allelic variants in the GPHN gene, namely the missense mutation c.1264G > A and splice acceptor variant c.1315-2A > G, in a patient with developmental and epileptic encephalopathy. We demonstrate that the splice acceptor variant leads to nonsense-mediated mRNA decay. Furthermore, the missense variant (D422N) alters gephyrin structure, as examined by analytical size exclusion chromatography and circular dichroism-spectroscopy, thus leading to reduced receptor clustering and sensitivity towards calpain-mediated cleavage. In addition, both alterations contribute to an observed reduction of inhibitory signal transmission in neurons, which likely contributes to the pathological encephalopathy.


Assuntos
Encefalopatias , Epilepsia , Encefalopatias/metabolismo , Proteínas de Transporte/metabolismo , Epilepsia/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo
6.
Cell Rep ; 36(7): 109522, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407407

RESUMO

Neuro-vascular communication is essential to synchronize central nervous system development. Here, we identify angiopoietin/Tie2 as a neuro-vascular signaling axis involved in regulating dendritic morphogenesis of Purkinje cells (PCs). We show that in the developing cerebellum Tie2 expression is not restricted to blood vessels, but it is also present in PCs. Its ligands angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are expressed in neural cells and endothelial cells (ECs), respectively. PC-specific deletion of Tie2 results in reduced dendritic arborization, which is recapitulated in neural-specific Ang1-knockout and Ang2 full-knockout mice. Mechanistically, RNA sequencing reveals that Tie2-deficient PCs present alterations in gene expression of multiple genes involved in cytoskeleton organization, dendritic formation, growth, and branching. Functionally, mice with deletion of Tie2 in PCs present alterations in PC network functionality. Altogether, our data propose Ang/Tie2 signaling as a mediator of intercellular communication between neural cells, ECs, and PCs, required for proper PC dendritic morphogenesis and function.


Assuntos
Angiopoietina-2/metabolismo , Dendritos/metabolismo , Morfogênese , Células de Purkinje/metabolismo , Receptor TIE-2/metabolismo , Transdução de Sinais , Angiopoietina-1/metabolismo , Animais , Cerebelo/irrigação sanguínea , Cerebelo/crescimento & desenvolvimento , Deleção de Genes , Regulação da Expressão Gênica , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Especificidade de Órgãos
7.
J Vis Exp ; (168)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33645565

RESUMO

Understanding the ephemeral changes that occur during brain development and maturation requires detailed high-resolution imaging in space and time at cellular and subcellular resolution. Advances in molecular and imaging technologies have allowed us to gain numerous detailed insights into cellular and molecular mechanisms of brain development in the transparent zebrafish embryo. Recently, processes of refinement of neuronal connectivity that occur at later larval stages several weeks after fertilization, which are for example control of social behavior, decision making or motivation-driven behavior, have moved into focus of research. At these stages, pigmentation of the zebrafish skin interferes with light penetration into brain tissue, and solutions for embryonic stages, e.g., pharmacological inhibition of pigmentation, are not feasible anymore. Therefore, a minimally invasive surgical solution for microscopy access to the brain of awake zebrafish is provided that is derived from electrophysiological approaches. In teleosts, skin and soft skull cartilage can be carefully removed by micro-peeling these layers, exposing underlying neurons and axonal tracts without damage. This allows for recording neuronal morphology, including synaptic structures and their molecular contents, and the observation of physiological changes such as Ca2+ transients or intracellular transport events. In addition, interrogation of these processes by means of pharmacological inhibition or optogenetic manipulation is feasible. This brain exposure approach provides information about structural and physiological changes in neurons as well as the correlation and interdependence of these events in live brain tissue in the range of minutes or hours. The technique is suitable for in vivo brain imaging of zebrafish larvae up to 30 days post fertilization, the latest developmental stage tested so far. It, thus, provides access to such important questions as synaptic refinement and scaling, axonal and dendritic transport, synaptic targeting of cytoskeletal cargo or local activity-dependent expression. Therefore, a broad use for this mounting and imaging approach can be anticipated.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Imageamento Tridimensional , Pele/diagnóstico por imagem , Crânio/diagnóstico por imagem , Peixe-Zebra/crescimento & desenvolvimento , Anestesia , Animais , Encéfalo/irrigação sanguínea , Larva/fisiologia , Neurônios/fisiologia , Vigília/fisiologia
8.
Front Mol Neurosci ; 12: 209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551707

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy with about 30% of patients developing pharmacoresistance. These patients continue to suffer from seizures despite polytherapy with antiepileptic drugs (AEDs) and have an increased risk for premature death, thus requiring further efforts for the development of new antiepileptic therapies. The molecule dimethylethanolamine (DMEA) has been tested as a potential treatment in various neurological diseases, albeit the functional mechanism of action was never fully understood. In this study, we investigated the effects of DMEA on neuronal activity in single-cell recordings of primary neuronal cultures. DMEA decreased the frequency of spontaneous synaptic events in a concentration-dependent manner with no apparent effect on resting membrane potential (RMP) or action potential (AP) threshold. We further tested whether DMEA can exert antiepileptic effects in human brain tissue ex vivo. We analyzed the effect of DMEA on epileptiform activity in the CA1 region of the resected hippocampus of TLE patients in vitro by recording extracellular field potentials in the pyramidal cell layer. Epileptiform burst activity in resected hippocampal tissue from TLE patients remained stable over several hours and was pharmacologically suppressed by lacosamide, demonstrating the applicability of our platform to test antiepileptic efficacy. Similar to lacosamide, DMEA also suppressed epileptiform activity in the majority of samples, albeit with variable interindividual effects. In conclusion, DMEA might present a new approach for treatment in pharmacoresistant TLE and further studies will be required to identify its exact mechanism of action and the involved molecular targets.

10.
Dev Biol ; 445(1): 54-67, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385274

RESUMO

The role of agrin, Lrp4 and MuSK, key organizers of neuromuscular synaptogenesis, in the developing CNS is only poorly understood. We investigated the role of these proteins in cultured mouse embryonic cortical neurons from wildtype and from Lrp4- and MuSK-deficient mice. Neurons from Lrp4-deficient mice had fewer but longer primary dendrites and a decreased density of puncta containing excitatory and inhibitory synapse-associated proteins. Neurons from MuSK-deficient mice had an altered dendritic branching pattern but no change in the density of puncta stained by antibodies against synapse-associated proteins. Transfection of TM-agrin compensated the dendritic branching deficits in Lrp4-deficient but not in MuSK-deficient neurons. TM-agrin transfection increased the density of excitatory synaptic puncta in MuSK-deficient but not in Lrp4-deficient mice and reduced the number of inhibitory synaptic puncta irrespective of MuSK and Lrp4 expression. Addition of purified soluble agrin to microisland cultures of cortical neurons revealed an Lrp4-dependent increase in the size and density of glutamatergic synaptic puncta and in mEPSC but not in mIPSC frequency and amplitude. Thus, agrin induced an Lrp4-independent increase in dendritic branch complexity, an Lrp4-dependent increase of excitatory synaptic puncta and an Lrp4- and MuSK-independent decrease in the density of puncta containing inhibitory synapse-associated proteins. These results establish selective roles for agrin, Lrp4 and MuSK during dendritogenesis and synaptogenesis in cultured CNS neurons.


Assuntos
Agrina/metabolismo , Junção Neuromuscular/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de LDL/metabolismo , Sinapses/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Sistema Nervoso Central/patologia , Dendritos/metabolismo , Feminino , Proteínas Relacionadas a Receptor de LDL , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese
12.
J Clin Invest ; 127(12): 4365-4378, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106383

RESUMO

Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism characterized by neurodegeneration and death in early childhood. The rapid and progressive neurodegeneration in MoCD presents a major clinical challenge and may relate to the poor understanding of the molecular mechanisms involved. Recently, we reported that treating patients with cyclic pyranopterin monophosphate (cPMP) is a successful therapy for a subset of infants with MoCD and prevents irreversible brain damage. Here, we studied S-sulfocysteine (SSC), a structural analog of glutamate that accumulates in the plasma and urine of patients with MoCD, and demonstrated that it acts as an N-methyl D-aspartate receptor (NMDA-R) agonist, leading to calcium influx and downstream cell signaling events and neurotoxicity. SSC treatment activated the protease calpain, and calpain-dependent degradation of the inhibitory synaptic protein gephyrin subsequently exacerbated SSC-mediated excitotoxicity and promoted loss of GABAergic synapses. Pharmacological blockade of NMDA-R, calcium influx, or calpain activity abolished SSC and glutamate neurotoxicity in primary murine neurons. Finally, the NMDA-R antagonist memantine was protective against the manifestation of symptoms in a tungstate-induced MoCD mouse model. These findings demonstrate that SSC drives excitotoxic neurodegeneration in MoCD and introduce NMDA-R antagonists as potential therapeutics for this fatal disease.


Assuntos
Sinalização do Cálcio , Cisteína/análogos & derivados , Neurônios GABAérgicos/metabolismo , Erros Inatos do Metabolismo dos Metais/metabolismo , Doenças Neurodegenerativas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cisteína/metabolismo , Modelos Animais de Doenças , Neurônios GABAérgicos/patologia , Células HEK293 , Humanos , Memantina/farmacologia , Erros Inatos do Metabolismo dos Metais/tratamento farmacológico , Erros Inatos do Metabolismo dos Metais/patologia , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Compostos Organofosforados/farmacologia , Pterinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/metabolismo , Sinapses/patologia , Compostos de Tungstênio/toxicidade
13.
Front Mol Neurosci ; 10: 439, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375302

RESUMO

C-to-U RNA editing of glycine receptors (GlyR) can play an important role in disease progression of temporal lobe epilepsy (TLE) as it may contribute in a neuron type-specific way to neuropsychiatric symptoms of the disease. It is therefore necessary to develop tools that allow identification of neuron types that express RNA-edited GlyR protein. In this study, we identify NH4 as agonist of C-to-U RNA edited GlyRs. Furthermore, we generated a new molecular C-to-U RNA editing sensor tool that detects Apobec-1- dependent RNA editing in HEPG2 cells and rat primary hippocampal neurons. Using this sensor combined with NH4 application, we were able to identify C-to-U RNA editing-competent neurons and expression of C-to-U RNA-edited GlyR protein in neurons. Bioinformatic analysis of 1,000 Genome Project Phase 3 allele frequencies coding for human Apobec-1 80M and 80I variants showed differences between populations, and the results revealed a preference of the 80I variant to generate RNA-edited GlyR protein. Finally, we established a new PCR-based restriction fragment length polymorphism (RFLP) approach to profile mRNA expression with regard to the genetic APOBEC1 dimorphism of patients with intractable temporal lobe epilepsy (iTLE) and found that the patients fall into two groups. Patients with expression of the Apobec-1 80I variant mostly suffered from simple or complex partial seizures, whereas patients with 80M expression exhibited secondarily generalized seizure activity. Thus, our method allows the characterization of Apobec-1 80M and 80l variants in the brain and provides a new way to epidemiologically and semiologically classify iTLE according to the two different APOBEC1 alleles. Together, these results demonstrate Apobec-1-dependent expression of RNA-edited GlyR protein in neurons and identify the APOBEC1 80I/M-coding alleles as new genetic risk factors for iTLE patients.

14.
Front Mol Neurosci ; 9: 124, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27932948

RESUMO

Recent advances in sequencing technologies led to the identification of a plethora of different genes and several hundreds of amino acid recoding edited positions. Changes in editing rates of some of these positions were associated with diseases such as atherosclerosis, myopathy, epilepsy, major depression disorder, schizophrenia and other mental disorders as well as cancer and brain tumors. This review article summarizes our current knowledge on that front and presents glycine receptor C-to-U RNA editing as a first example of disease-associated increased RNA editing that includes assessment of disease mechanisms of the corresponding gene product in an animal model.

15.
J Biol Chem ; 291(34): 18030-40, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382060

RESUMO

Glycine receptors are chloride-permeable, ligand-gated ion channels and contribute to the inhibition of neuronal firing in the central nervous system or to facilitation of neurotransmitter release if expressed at presynaptic sites. Recent structure-function studies have provided detailed insights into the mechanisms of channel gating, desensitization, and ion permeation. However, most of the work has focused only on comparing a few isoforms, and among studies, different cellular expression systems were used. Here, we performed a series of experiments using recombinantly expressed homomeric and heteromeric glycine receptor channels, including their splice variants, in the same cellular expression system to investigate and compare their electrophysiological properties. Our data show that the current-voltage relationships of homomeric channels formed by the α2 or α3 subunits change upon receptor desensitization from a linear to an inwardly rectifying shape, in contrast to their heteromeric counterparts. The results demonstrate that inward rectification depends on a single amino acid (Ala(254)) at the inner pore mouth of the channels and is closely linked to chloride permeation. We also show that the current-voltage relationships of glycine-evoked currents in primary hippocampal neurons are inwardly rectifying upon desensitization. Thus, the alanine residue Ala(254) determines voltage-dependent rectification upon receptor desensitization and reveals a physio-molecular signature of homomeric glycine receptor channels, which provides unprecedented opportunities for the identification of these channels at the single cell level.


Assuntos
Fenômenos Eletrofisiológicos , Multimerização Proteica/fisiologia , Receptores de Glicina/metabolismo , Processamento Alternativo/fisiologia , Substituição de Aminoácidos , Animais , Humanos , Masculino , Mutação de Sentido Incorreto , Ratos , Ratos Wistar , Receptores de Glicina/genética
16.
EMBO Mol Med ; 7(12): 1580-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26613940

RESUMO

Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABAA and glycine receptors (GABAARs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin-G375D was non-synaptically localized in neurons and acted dominant-negatively on the clustering of wild-type gephyrin leading to a marked decrease in GABAAR surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin-G375D and the receptors, suggesting that Gly375 is essential for gephyrin-receptor complex formation. Surprisingly, gephyrin-G375D was also unable to synthesize MoCo and activate MoCo-dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Epilepsia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Coenzimas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Humanos , Metaloproteínas/metabolismo , Cofatores de Molibdênio , Pteridinas/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA