Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Eng Life Sci ; 22(3-4): 178-191, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35382538

RESUMO

CO2 in the atmosphere is a major contributor to global warming but at the same time it has the potential to be a carbon source for advanced biomanufacturing. To utilize CO2, carbonic anhydrase has been identified as a key enzyme. Furthermore, attempts have been made to accelerate the sequestration via pressure. This study aims to combine both approaches to achieve high sequestration rates. The carbonic anhydrase of the alkaliphilic cyanobacterium Coleofasciculus chthonoplastes (cahB1) and bovine carbonic anhydrase (BCA) are introduced into a high-pressure reactor to catalyze the hydration of CO2 at up to 20 bar. The reactor is filled with a CaCl2 solution. Due to the presence of Ca2+, the hydrated CO2 precipitates as CaCO3. The impact of the carbonic anhydrase is clearly visible at all pressures tested. At ambient pressure a CO2 sequestration rate of 243.68 kgCaCO3/m3 h for cahB1 was achieved compared to 150.41 kgCaCO3/m3 h without enzymes. At 20 bar the rates were 2682.88 and 2267.88 kgCaCO3/m3 h, respectively. The study shows the benefit of a combined CO2 sequestration process. To examinate the influence of the enzymes on the product formation, the precipitated CaCO3 was analyzed regarding the crystalline phase and morphology. An interchange of the crystalline phase from vaterite to calcite was observed and discussed.

2.
J Chromatogr A ; 1620: 460940, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32183982

RESUMO

Protein adsorption plays a role in many fields, where in some it is desirable to maximize the amount adsorbed, in others it is important to avoid protein adsorption altogether. Therefore, theoretical methods are needed for a better understanding of the underlying processes and for the prediction of adsorption quantities. In this study, we present a proof-of-concept that the calculation of protein adsorption isotherms by molecular dynamics (MD) simulations is possible using the steric mass action (SMA) theory. Here we are investigating the adsorption of bovine/human serum albumin (BSA/HSA) and hemoglobin (bHb) on Q Sepharose FF. Protein adsorption isotherms were experimentally determined and modeled. Free energy profiles of protein adsorption were calculated by MD simulations to determine the Henry isotherms as a first step. Although each simulation contained only one protein, notably the calculated isotherms are in reasonably good agreement with the experimental isotherms. Hence, we could show that MD data can lead to protein adsorption data in good agreement with experimental data. The results were critically discussed and requirements for future applications are identified.


Assuntos
Proteínas/química , Adsorção , Animais , Bovinos , Hemoglobinas/química , Humanos , Simulação de Dinâmica Molecular , Sefarose , Soroalbumina Bovina/química , Albumina Sérica Humana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA