RESUMO
The mitochondrial rhomboid protease PARL regulates mitophagy by balancing intramembrane proteolysis of PINK1 and PGAM5. It has been implicated in the pathogenesis of Parkinson's disease, but its investigation as a possible therapeutic target is challenging in this context because genetic deficiency of PARL may result in compensatory mechanisms. To address this problem, we undertook a hitherto unavailable chemical biology strategy. We developed potent PARL-targeting ketoamide inhibitors and investigated the effects of acute PARL suppression on the processing status of PINK1 intermediates and on Parkin activation. This approach revealed that PARL inhibition leads to a robust activation of the PINK1/Parkin pathway without major secondary effects on mitochondrial properties, which demonstrates that the pharmacological blockage of PARL to boost PINK1/Parkin-dependent mitophagy is a feasible approach to examine novel therapeutic strategies for Parkinson's disease. More generally, this study showcases the power of ketoamide inhibitors for cell biological studies of rhomboid proteases.
Assuntos
Doença de Parkinson , Peptídeo Hidrolases , Humanos , Metaloproteases/genética , Metaloproteases/metabolismo , Mitofagia , Doença de Parkinson/tratamento farmacológico , Proteínas Quinases/metabolismo , Proteínas Mitocondriais/metabolismo , Endopeptidases , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The intramembrane protease PARL acts as a crucial mitochondrial safeguard by cleaving the mitophagy regulators PINK1 and PGAM5. Depending on the stress level, PGAM5 can either stimulate cell survival or cell death. In contrast to PINK1, which is constantly cleaved in healthy mitochondria and only active when the inner mitochondrial membrane is depolarized, PGAM5 processing is inversely regulated. However, determinants of PGAM5 that indicate it as a conditional substrate for PARL have not been rigorously investigated, and it is unclear how uncoupling the mitochondrial membrane potential affects its processing compared to that of PINK1. Here, we show that several polar transmembrane residues in PGAM5 distant from the cleavage site serve as determinants for its PARL-catalyzed cleavage. Our NMR analysis indicates that a short N-terminal amphipathic helix, followed by a kink and a C-terminal transmembrane helix harboring the scissile peptide bond are key for a productive interaction with PARL. Furthermore, we also show that PGAM5 is stably inserted into the inner mitochondrial membrane until uncoupling the membrane potential triggers its disassembly into monomers, which are then cleaved by PARL. In conclusion, we propose a model in which PGAM5 is slowly processed by PARL-catalyzed cleavage that is influenced by multiple hierarchical substrate features, including a membrane potential-dependent oligomeric switch.
Assuntos
Homeostase , Metaloproteases , Mitocôndrias , Proteínas Mitocondriais , Fosfoproteínas Fosfatases , Proteólise , Células HeLa , Humanos , Metaloproteases/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Peptídeos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismoRESUMO
Disease modeling requires appropriate cellular models that best mimic the underlying pathophysiology. Human origin and an adequate expression of the disease protein are pre-requisites that support information from a model to be meaningful. In this study we investigated expression profiles of (i) PBMCs and (ii) fibroblasts as patient derived cells as well as (iii) lymphoblasts and (iv) induced pluripotent stem cells (iPSC) as immortalized sources, and (v) iPSC-derived cortical neurons to assess their aptitude to model motor neuron diseases (MNDs) including hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). We generated all five different cell types from two healthy donors and performed RNA sequencing to display expression patterns in MND-related genes. For the ten most common HSP genotypes we validated gene expression by qPCR. To verify the results on protein level, proteome analysis of fibroblasts, iPSCs and cortical neurons was performed. Depending on the specific MND gene we found largely different expression patterns. Out of 168 MND-related genes, 50 had their highest expression in iPSC-derived cortical neurons, 41 were most strongly expressed in fibroblasts, 26 in lymphoblasts, 22 in iPSCs, and 14 in PBMCs. Pathophysiologically related MNDs like HSPs associated with axonal transport deficits shared highest expression in cortical neurons. 15 MND-related genes were not detectable in any of the analyzed cell types. This may reflect the critical dependency of motor neurons on support of other cell types like oligodendrocytes which express myelin proteins like L1CAM (SPG1), PLP1 (SPG2) and MAG (SPG75) which are lacking in neurons but cause MNDs if mutated. This study provides comprehensive information on expression of genes associated with a large spectrum of MNDs. Expression profiles can be used to inform on appropriate cell models for genotype specific motor neuron research.