Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 5(6): 646-653.e5, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29153839

RESUMO

Transcription in eukaryotic cells occurs in gene-specific bursts or pulses of activity. Recent studies identified a spectrum of transcriptionally active "on-states," interspersed with periods of inactivity, but these "off-states" and the process of transcriptional deactivation are poorly understood. To examine what occurs during deactivation, we investigate the dynamics of switching between variable rates. We measured live single-cell expression of luciferase reporters from human growth hormone or human prolactin promoters in a pituitary cell line. Subsequently, we applied a statistical variable-rate model of transcription, validated by single-molecule FISH, to estimate switching between transcriptional rates. Under the assumption that transcription can switch to any rate at any time, we found that transcriptional activation occurs predominantly as a single switch, whereas deactivation occurs with graded, stepwise decreases in transcription rate. Experimentally altering cAMP signalling with forskolin or chromatin remodelling with histone deacetylase inhibitor modifies the duration of defined transcriptional states. Our findings reveal transcriptional activation and deactivation as mechanistically independent, asymmetrical processes.


Assuntos
Hormônio do Crescimento Humano/genética , Modelos Teóricos , Hipófise/fisiologia , Prolactina/genética , Transcrição Gênica , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Feminino , Genes Reporter/genética , Histona Desacetilases/metabolismo , Humanos , Luciferases/genética , Regiões Promotoras Genéticas/genética , Ratos , Análise de Célula Única , Ativação Transcricional
2.
Elife ; 5: e08494, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828110

RESUMO

Transcription at individual genes in single cells is often pulsatile and stochastic. A key question emerges regarding how this behaviour contributes to tissue phenotype, but it has been a challenge to quantitatively analyse this in living cells over time, as opposed to studying snap-shots of gene expression state. We have used imaging of reporter gene expression to track transcription in living pituitary tissue. We integrated live-cell imaging data with statistical modelling for quantitative real-time estimation of the timing of switching between transcriptional states across a whole tissue. Multiple levels of transcription rate were identified, indicating that gene expression is not a simple binary 'on-off' process. Immature tissue displayed shorter durations of high-expressing states than the adult. In adult pituitary tissue, direct cell contacts involving gap junctions allowed local spatial coordination of prolactin gene expression. Our findings identify how heterogeneous transcriptional dynamics of single cells may contribute to overall tissue behaviour.


Assuntos
Regulação da Expressão Gênica , Hipófise/fisiologia , Transcrição Gênica , Animais , Perfilação da Expressão Gênica , Genes Reporter , Imagem Óptica , Ratos Endogâmicos F344 , Análise Espaço-Temporal
3.
Biostatistics ; 16(4): 655-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25819987

RESUMO

Gene expression is made up of inherently stochastic processes within single cells and can be modeled through stochastic reaction networks (SRNs). In particular, SRNs capture the features of intrinsic variability arising from intracellular biochemical processes. We extend current models for gene expression to allow the transcriptional process within an SRN to follow a random step or switch function which may be estimated using reversible jump Markov chain Monte Carlo (MCMC). This stochastic switch model provides a generic framework to capture many different dynamic features observed in single cell gene expression. Inference for such SRNs is challenging due to the intractability of the transition densities. We derive a model-specific birth-death approximation and study its use for inference in comparison with the linear noise approximation where both approximations are considered within the unifying framework of state-space models. The methodology is applied to synthetic as well as experimental single cell imaging data measuring expression of the human prolactin gene in pituitary cells.


Assuntos
Modelos Genéticos , Modelos Estatísticos , Processos Estocásticos , Transcrição Gênica , Animais , Masculino , Imagem Óptica , Ratos , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA