RESUMO
Microtubule affinity-regulating kinase 2 (MARK2) contributes to establishing neuronal polarity and developing dendritic spines. Although large-scale sequencing studies have associated MARK2 variants with autism spectrum disorder (ASD), the clinical features and variant spectrum in affected individuals with MARK2 variants, early developmental phenotypes in mutant human neurons, and the pathogenic mechanism underlying effects on neuronal development have remained unclear. Here, we report 31 individuals with MARK2 variants and presenting with ASD, other neurodevelopmental disorders, and distinctive facial features. Loss-of-function (LoF) variants predominate (81%) in affected individuals, while computational analysis and in vitro expression assay of missense variants supported the effect of MARK2 loss. Using proband-derived and CRISPR-engineered isogenic induced pluripotent stem cells (iPSCs), we show that MARK2 loss leads to early neuronal developmental and functional deficits, including anomalous polarity and dis-organization in neural rosettes, as well as imbalanced proliferation and differentiation in neural progenitor cells (NPCs). Mark2+/- mice showed abnormal cortical formation and partition and ASD-like behavior. Through the use of RNA sequencing (RNA-seq) and lithium treatment, we link MARK2 loss to downregulation of the WNT/ß-catenin signaling pathway and identify lithium as a potential drug for treating MARK2-associated ASD.
RESUMO
Variant detection from long-read genome sequencing (lrGS) has proven to be more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare diseases that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, nine of which (8/96, â¼9.4%) harbored pathogenic or likely pathogenic variants. Nine probands (â¼9.4%) had variants that were accurately called in both srGS and lrGS and represent changes to clinical interpretation, mostly from recently published gene-disease associations. Seven cases included variants that were only correctly interpreted in lrGS, including copy-number variants (CNVs), an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality control and filtration. Thus, while reanalysis of older srGS data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS data sets grow allowing for better variant-frequency annotation, the additional lrGS-only rare disease yield will grow over time.
RESUMO
Bi-allelic disruptive variants (nonsense, frameshift, and splicing variants) in KDM5B have been identified as causative for autosomal recessive intellectual developmental disorder type 65. In contrast, dominant variants, usually disruptive as well, have been more difficult to implicate in a specific phenotype, since some of them have been found in unaffected controls or relatives. Here, we describe individuals with likely pathogenic variants in KDM5B, including eight individuals with dominant missense variants. This study is a retrospective case series of 21 individuals with variants in KDM5B. We performed deep phenotyping and collected the clinical information and molecular data of these individuals' family members. We compared the phenotypes according to variant type and to those previously described in the literature. The most common features were developmental delay, impaired intellectual development, behavioral problems, autistic behaviors, sleep disorders, facial dysmorphism, and overgrowth. DD, ASD behaviors, and sleep disorders were more common in individuals with dominant disruptive KDM5B variants, while individuals with dominant missense variants presented more frequently with renal and skin anomalies. This study extends our understanding of the KDM5B-related neurodevelopmental disorder and suggests the pathogenicity of certain dominant KDM5B missense variants.
Assuntos
Histona Desmetilases com o Domínio Jumonji , Mutação de Sentido Incorreto , Fenótipo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Feminino , Masculino , Criança , Pré-Escolar , Adolescente , Adulto , Estudos de Associação Genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Estudos Retrospectivos , Lactente , Genótipo , Proteínas Nucleares , Proteínas RepressorasRESUMO
Variant detection from long-read genome sequencing (lrGS) has proven to be considerably more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare disease that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, eight of which (8/96, 8.33%) harbored pathogenic or likely pathogenic variants. Newly identified variants were visible in both srGS and lrGS in nine probands (~9.4%) and resulted from changes to interpretation mostly from recent gene-disease association discoveries. Seven cases included variants that were only interpretable in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either: not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.
RESUMO
PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.
Assuntos
Transtorno do Espectro Autista , Epilepsia , Animais , Humanos , Ratos , Transtorno do Espectro Autista/genética , Epilepsia/genética , Mutação de Sentido Incorreto/genética , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Rabfilina-3ARESUMO
BACKGROUND: It is critical to understand the wide-ranging clinical and non-clinical effects of genome sequencing (GS) for parents in the NICU context. We assessed parents' experiences with GS as a first-line diagnostic tool for infants with suspected genetic conditions in the NICU. METHODS: Parents of newborns (N = 62) suspected of having a genetic condition were recruited across five hospitals in the southeast United States as part of the SouthSeq study. Semi-structured interviews (N = 78) were conducted after parents received their child's sequencing result (positive, negative, or variants of unknown significance). Thematic analysis was performed on all interviews. RESULTS: Key themes included that (1) GS in infancy is important for reproductive decision making, preparing for the child's future care, ending the diagnostic odyssey, and sharing results with care providers; (2) the timing of disclosure was acceptable for most parents, although many reported the NICU environment was overwhelming; and (3) parents deny that receiving GS results during infancy exacerbated parent-infant bonding, and reported variable impact on their feelings of guilt. CONCLUSION: Parents reported that GS during the neonatal period was useful because it provided a "backbone" for their child's care. Parents did not consistently endorse negative impacts like interference with parent-infant bonding.
RESUMO
PURPOSE: Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains below 50%, suggesting that clinically relevant variants may be missed by standard analyses. Here, we analyze "poison exons" (PEs), which are evolutionarily conserved alternative exons often absent from standard gene annotations. Variants that alter PE inclusion can lead to loss of function and may be highly penetrant contributors to disease. METHODS: We curated published RNA sequencing data from developing mouse cortex to define 1937 conserved PE regions potentially relevant to NDDs, and we analyzed variants found by genome sequencing in multiple NDD cohorts. RESULTS: Across 2999 probands, we found 6 novel clinically relevant variants in PE regions. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family (SCN1A, SCN2A, and SCN8A), which is associated with epilepsies. One variant is in SNRPB, associated with cerebrocostomandibular syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and in genes with gene-phenotype associations consistent with each probands reported features. CONCLUSION: With a very minimal increase in variant analysis burden (average of 0.77 variants per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.
Assuntos
Epilepsia , Animais , Camundongos , Humanos , Éxons/genética , Epilepsia/diagnóstico , Epilepsia/genética , Fenótipo , Sequência de Bases , GenômicaRESUMO
Purpose: Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains around 50%, suggesting some clinically relevant rare variants may be missed by standard analyses. Here we analyze "poison exons" (PEs) which, while often absent from standard gene annotations, are alternative exons whose inclusion results in a premature termination codon. Variants that alter PE inclusion can lead to loss-of-function and may be highly penetrant contributors to disease. Methods: We curated published RNA-seq data from developing mouse cortex to define 1,937 PE regions conserved between humans and mice and potentially relevant to NDDs. We then analyzed variants found by genome sequencing in multiple NDD cohorts. Results: Across 2,999 probands, we found six clinically relevant variants in PE regions that were previously overlooked. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family ( SCN1A, SCN2A , and SCN8A ), associated with epilepsies. One variant is in SNRPB , associated with Cerebrocostomandibular Syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and were observed in probands with features consistent with those reported for the associated gene. Conclusion: With only a minimal increase in variant analysis burden (most probands had zero or one candidate PE variants in a known NDD gene, with an average of 0.77 per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.
RESUMO
Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.
Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Regulação da Expressão Gênica , Face , Proteínas Nucleares/genética , Histona Desmetilases/genéticaRESUMO
PURPOSE: SouthSeq is a translational research study that undertook genome sequencing (GS) for infants with symptoms suggestive of a genetic disorder. Recruitment targeted racial/ethnic minorities and rural, medically underserved areas in the Southeastern United States, which are historically underrepresented in genomic medicine research. METHODS: GS and analysis were performed for 367 infants to detect disease-causal variation concurrent with standard of care evaluation and testing. RESULTS: Definitive diagnostic (DD) or likely diagnostic (LD) genetic findings were identified in 30% of infants, and 14% of infants harbored an uncertain result. Only 43% of DD/LD findings were identified via concurrent clinical genetic testing, suggesting that GS testing is better for obtaining early genetic diagnosis. We also identified phenotypes that correlate with the likelihood of receiving a DD/LD finding, such as craniofacial, ophthalmologic, auditory, skin, and hair abnormalities. We did not observe any differences in diagnostic rates between racial/ethnic groups. CONCLUSION: We describe one of the largest-to-date GS cohorts of ill infants, enriched for African American and rural patients. Our results show the utility of GS because it provides early-in-life detection of clinically relevant genetic variations not detected by current clinical genetic testing, particularly for infants exhibiting certain phenotypic features.
Assuntos
Testes Diagnósticos de Rotina , Testes Genéticos , Sequência de Bases , Mapeamento Cromossômico , Testes Genéticos/métodos , Genômica , HumanosRESUMO
The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
Assuntos
Encefalopatias/genética , Epilepsia/genética , Rim Fundido/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Adolescente , Sequência de Aminoácidos , Animais , Encefalopatias/etiologia , Criança , Pré-Escolar , Epilepsia/complicações , Evolução Molecular , Feminino , Frequência do Gene , Humanos , Lactente , Masculino , Camundongos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/deficiência , Fenótipo , Estabilidade Proteica , Síndrome , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Adulto Jovem , Peixe-Zebra/genéticaRESUMO
Exome and genome sequencing have proven to be effective tools for the diagnosis of neurodevelopmental disorders (NDDs), but large fractions of NDDs cannot be attributed to currently detectable genetic variation. This is likely, at least in part, a result of the fact that many genetic variants are difficult or impossible to detect through typical short-read sequencing approaches. Here, we describe a genomic analysis using Pacific Biosciences circular consensus sequencing (CCS) reads, which are both long (>10 kb) and accurate (>99% bp accuracy). We used CCS on six proband-parent trios with NDDs that were unexplained despite extensive testing, including genome sequencing with short reads. We identified variants and created de novo assemblies in each trio, with global metrics indicating these datasets are more accurate and comprehensive than those provided by short-read data. In one proband, we identified a likely pathogenic (LP), de novo L1-mediated insertion in CDKL5 that results in duplication of exon 3, leading to a frameshift. In a second proband, we identified multiple large de novo structural variants, including insertion-translocations affecting DGKB and MLLT3, which we show disrupt MLLT3 transcript levels. We consider this extensive structural variation likely pathogenic. The breadth and quality of variant detection, coupled to finding variants of clinical and research interest in two of six probands with unexplained NDDs, support the hypothesis that long-read genome sequencing can substantially improve rare disease genetic discovery rates.
RESUMO
Background: The desire of parents to obtain a genetic diagnosis for their child with intellectual disability and associated symptoms has long been framed as a diagnostic odyssey, an arduous and sometimes perilous journey focused on the goal of identifying a cause for the child's condition.Methods: Semi-structured interviews (N = 60) were conducted with parents of children (N = 59, aged 2-24 years) with intellectual disability and/or developmental delay (IDD) who underwent genome sequencing at a single pediatric multispecialty clinic. Interviews were conducted after parents received their child's sequencing result (positive findings, negative findings, or variants of unknown significance). Thematic analysis was performed on all interviews.Results: Parents reported that obtaining a genetic diagnosis was one important step in their overall goal of helping their child live their best life possible life. They intended to use the result as a tool to help their child by seeking the correct school placement and obtaining benefits and therapeutic services.Conclusions: For the parents of children with IDD, the search for a genetic diagnosis is best conceptualized as a part of parents' ongoing efforts to leverage various diagnoses to obtain educational and therapeutic services for their children. Cleaving parents' search for a genetic diagnosis from these broader efforts obscures the value that some parents place on a sequencing result in finding and tailoring therapies and services beyond the clinic. Interviews with parents reveal, therefore, that genomic sequencing is best understood as one important stage of an ongoing therapeutic odyssey that largely takes place outside the clinic. Findings suggest the need to expand translational research efforts to contextualize a genetic diagnosis within parents' broader efforts to obtain educational and therapeutic services outside clinical contexts.
Assuntos
Motivação , Pais , Sequência de Bases , Criança , Família , Genômica , HumanosRESUMO
TBR1, a T-box transcription factor expressed in the cerebral cortex, regulates the expression of several candidate genes for autism spectrum disorders (ASD). Although TBR1 has been reported as a high-confidence risk gene for ASD and intellectual disability (ID) in functional and clinical reports since 2011, TBR1 has only recently been recorded as a human disease gene in the OMIM database. Currently, the neurodevelopmental disorders and structural brain anomalies associated with TBR1 variants are not well characterized. Through international data sharing, we collected data from 25 unreported individuals and compared them with data from the literature. We evaluated structural brain anomalies in seven individuals by analysis of MRI images, and compared these with anomalies observed in TBR1 mutant mice. The phenotype included ID in all individuals, associated to autistic traits in 76% of them. No recognizable facial phenotype could be identified. MRI analysis revealed a reduction of the anterior commissure and suggested new features including dysplastic hippocampus and subtle neocortical dysgenesis. This report supports the role of TBR1 in ID associated with autistic traits and suggests new structural brain malformations in humans. We hope this work will help geneticists to interpret TBR1 variants and diagnose ASD probands.
Assuntos
Transtorno Autístico/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Fenótipo , Proteínas com Domínio T/genética , Adolescente , Adulto , Animais , Transtorno Autístico/patologia , Criança , Pré-Escolar , Cognição , Anormalidades Craniofaciais/patologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Deficiência Intelectual/patologia , Masculino , Camundongos , Mutação , Neocórtex/diagnóstico por imagem , Neocórtex/patologia , Síndrome , Proteínas com Domínio T/metabolismoRESUMO
The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of these disorders, we performed bioinformatics analyses that demonstrated a high level of functional convergence during fetal cortical development between BAZ2B and genes known to cause autism spectrum disorder (ASD) and neurodevelopmental disorder. We also found an excess of de novo BAZ2B loss-of-function variants in exome sequencing data from previously published cohorts of individuals with neurodevelopmental disorders. We subsequently identified seven additional individuals with heterozygous deletions, stop-gain, or de novo missense variants affecting BAZ2B. All of these individuals have developmental delay (DD), intellectual disability (ID), and/or ASD. Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a neurodevelopmental disorder, whose cardinal features include DD, ID, and ASD.
Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Haploinsuficiência , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fatores Genéricos de Transcrição/genética , Alelos , Substituição de Aminoácidos , Transtorno do Espectro Autista/diagnóstico , Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Deficiência Intelectual/diagnóstico , Transtornos do Neurodesenvolvimento/diagnóstico , Deleção de SequênciaRESUMO
The underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay. Nine variants were protein-truncating and four missense. Overlapping symptoms included neurodevelopmental delay, intellectual disability, macrocephaly, and psychiatric disorders (autism spectrum disorders/attention deficit hyperactivity disorder). One proband presented with an opposing phenotype of microcephaly and the only missense-variant located in the PH-domain of WDFY3. Findings of this case are supported by previously published data, demonstrating that pathogenic PH-domain variants can lead to microcephaly via canonical Wnt-pathway upregulation. In a separate study, we reported that the autophagy scaffolding protein WDFY3 is required for cerebral cortical size regulation in mice, by controlling proper division of neural progenitors. Here, we show that proliferating cortical neural progenitors of human embryonic brains highly express WDFY3, further supporting a role for this molecule in the regulation of prenatal neurogenesis. We present data on Wnt-pathway dysregulation in Wdfy3-haploinsufficient mice, which display macrocephaly and deficits in motor coordination and associative learning, recapitulating the human phenotype. Consequently, we propose that in humans WDFY3 loss-of-function variants lead to macrocephaly via downregulation of the Wnt pathway. In summary, we present WDFY3 as a novel gene linked to mild to moderate neurodevelopmental delay and intellectual disability and conclude that variants putatively causing haploinsufficiency lead to macrocephaly, while an opposing pathomechanism due to variants in the PH-domain of WDFY3 leads to microcephaly.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Relacionadas à Autofagia/genética , Encéfalo/embriologia , Encéfalo/patologia , Variação Genética/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Proteínas Adaptadoras de Transdução de Sinal/química , Adolescente , Animais , Proteínas Relacionadas à Autofagia/química , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , Estrutura Secundária de ProteínaRESUMO
Cardiofaciocutaneous (CFC) syndrome is a genetic disorder characterized by distinctive facial features, congenital heart defects, and skin abnormalities. Several germline gain-of-function mutations in the RAS/RAF/MEK/ERK pathway are associated with the disease, including KRAS, BRAF, MEK1, and MEK2. CFC syndrome thus belongs to a group of disorders known as RASopathies, which are all caused by pathogenic mutations in various genes encoding components of the RAS pathway. We recently identified novel variants in YWHAZ, a 14-3-3 family member, in individuals with a phenotype consistent with CFC that may potentially be deleterious and disease-causing. In the current study, we take advantage of the vertebrate model Xenopus laevis to analyze the functional consequence of a particular YWHAZ variant, S230W, and investigate the molecular mechanisms underlying its activity. We show that compared with wild type YWHAZ, the S230W variant induces severe embryonic defects when ectopically expressed in early Xenopus embryos. The S230W variant also rescues the defects induced by a dominant negative FGF receptor more efficiently and enhances Raf-stimulated Erk phosphorylation to a higher level than wild type YWHAZ. Although neither YWHAZ nor the variant promotes membrane recruitment of Raf proteins, the variant binds to more Raf and escapes phosphorylation by casein kinase 1a. Our data provide strong support to the hypothesis that the S230W variant of YWHAZ is a gain-of-function mutation in the RAS-ERK pathway and may underlie a CFC phenotype.
RESUMO
Developmental delay and intellectual disability (DD and ID) are heterogeneous phenotypes that arise in many rare monogenic disorders. Because of this rarity, developing cohorts with enough individuals to robustly identify disease-associated genes is challenging. Social-media platforms that facilitate data sharing among sequencing labs can help to address this challenge. Through one such tool, GeneMatcher, we identified nine DD- and/or ID-affected probands with a rare, heterozygous variant in the gene encoding the serine/threonine-protein kinase BRSK2. All probands have a speech delay, and most present with intellectual disability, motor delay, behavioral issues, and autism. Six of the nine variants are predicted to result in loss of function, and computational modeling predicts that the remaining three missense variants are damaging to BRSK2 structure and function. All nine variants are absent from large variant databases, and BRSK2 is, in general, relatively intolerant to protein-altering variation among humans. In all six probands for whom parents were available, the mutations were found to have arisen de novo. Five of these de novo variants were from cohorts with at least 400 sequenced probands; collectively, the cohorts span 3,429 probands, and the observed rate of de novo variation in these cohorts is significantly higher than the estimated background-mutation rate (p = 2.46 × 10-6). We also find that exome sequencing provides lower coverage and appears less sensitive to rare variation in BRSK2 than does genome sequencing; this fact most likely reduces BRSK2's visibility in many clinical and research sequencing efforts. Altogether, our results implicate damaging variation in BRSK2 as a source of neurodevelopmental disease.
Assuntos
Deficiências do Desenvolvimento/genética , Deleção de Genes , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Transtorno Autístico/genética , Criança , Transtornos do Comportamento Infantil/genética , Pré-Escolar , Exoma , Feminino , Predisposição Genética para Doença , Variação Genética , Heterozigoto , Humanos , Masculino , Transtornos das Habilidades Motoras/genética , Mutação , Fenótipo , Sequenciamento do Exoma , Adulto JovemRESUMO
PURPOSE: To define the clinical characteristics of patients with variants in TCF20, we describe 27 patients, 26 of whom were identified via exome sequencing. We compare detailed clinical data with 17 previously reported patients. METHODS: Patients were ascertained through molecular testing laboratories performing exome sequencing (and other testing) with orthogonal confirmation; collaborating referring clinicians provided detailed clinical information. RESULTS: The cohort of 27 patients all had novel variants, and ranged in age from 2 to 68 years. All had developmental delay/intellectual disability. Autism spectrum disorders/autistic features were reported in 69%, attention disorders or hyperactivity in 67%, craniofacial features (no recognizable facial gestalt) in 67%, structural brain anomalies in 24%, and seizures in 12%. Additional features affecting various organ systems were described in 93%. In a majority of patients, we did not observe previously reported findings of postnatal overgrowth or craniosynostosis, in comparison with earlier reports. CONCLUSION: We provide valuable data regarding the prognosis and clinical manifestations of patients with variants in TCF20.