Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(10): 10I127, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399819

RESUMO

The current construction of a new nuclear-imaging view at the National Ignition Facility will provide a third line of sight for hotspot and cold fuel imaging and the first dedicated line of sight for 4.4-MeV γ-ray imaging of the remaining carbon ablator. To minimize the effort required to hold and align apertures inside the vacuum chamber, the apertures for the two lines of sight will be contained in the same array. In this work, we discuss the system requirements for neutron and γ-ray imaging and the resulting aperture array design.

2.
Rev Sci Instrum ; 87(11): 11D821, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910447

RESUMO

The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 µm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 µm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.

3.
Rev Sci Instrum ; 87(11): 11E313, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910456

RESUMO

A dual-channel streaked soft x-ray imager has been designed and used on high energy-density physics experiments at the National Ignition Facility. This streaked imager creates two images of the same x-ray source using two slit apertures and a single shallow angle reflection from a nickel mirror. Thin filters are used to create narrow band pass images at 510 eV and 360 eV. When measuring a Planckian spectrum, the brightness ratio of the two images can be translated into a color-temperature, provided that the spectral sensitivity of the two images is well known. To reduce uncertainty and remove spectral features in the streak camera photocathode from this photon energy range, a thin 100 nm CsI on 50 nm Al streak camera photocathode was implemented. Provided that the spectral shape is well-known, then uncertainties on the spectral sensitivity limits the accuracy of the temperature measurement to approximately 4.5% at 100 eV.

4.
Rev Sci Instrum ; 87(5): 055110, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250473

RESUMO

A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF's x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 µm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were used to gate on photon energy ranges of approximately 300-510 eV and 200-400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.

5.
Appl Opt ; 40(9): 1404-11, 2001 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18357129

RESUMO

Efficient frequency doubling and tripling are critical to the successful operation of inertial confinement fusion laser systems such as the National Ignition Facility currently being constructed at the Lawrence Livermore National Laboratory and the Omega laser at the Laboratory for Laser Energetics. High-frequency conversion efficiency is strongly dependent on attainment of the phase-matching condition. In an ideal converter crystal, one can obtain the phase-matching condition throughout by angle tuning or temperature tuning of the crystal as a whole. In real crystals, imperfections in the crystal structure prohibit the attainment of phase matching at all locations in the crystal. We have modeled frequency doubling and tripling with a quantitative measure of this departure from phase matching in real crystals. This measure is obtained from interferometry of KDP and KD*P crystals at two orthogonal light polarizations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA