Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(9): e107950, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25237809

RESUMO

UNLABELLED: Recent findings indicate that apolipoprotein A-I (ApoA-I) may be a protective humoral mediator involved in remote ischemic preconditioning (RIPC). This study sought to determine if ApoA-I mediates its protective effects via the RISK and SAFE signaling pathways implicated in RIPC. Wistar rats were allocated to one of the following groups. CONTROL: rats were subjected to myocardial ischemia/reperfusion (I/R) without any further intervention; RIPC: four cycles of limb I/R were applied prior to myocardial ischemia; ApoA-I: 10 mg/Kg of ApoA-I were intravenously injected prior to myocardial ischemia; ApoA-I + inhibitor: pharmacological inhibitors of RISK/SAFE pro-survival kinase (Akt, ERK1/2 and STAT-3) were administered prior to ApoA-I injection. Infarct size was significantly reduced in the RIPC group compared to CONTROL. Similarly, ApoA-I injection efficiently protected the heart, recapitulating RIPC-induced cardioprotection. The ApoA-I protective effect was associated with Akt and GSK-3ß phosphorylation and substantially inhibited by pretreatment with Akt and ERK1/2 inhibitors. Pretreatment with ApoA-I in a rat model of I/R recapitulates RIPC-induced cardioprotection and shares some similar molecular mechanisms with those of RIPC-involved protection of the heart.


Assuntos
Apolipoproteína A-I/farmacologia , Cardiotônicos/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Transdução de Sinais , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar
2.
PLoS One ; 9(1): e85669, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454915

RESUMO

Remote ischemic preconditioning's (RIPC) ability to render the myocardium resistant to subsequent prolonged ischemia is now clearly established in different species, including humans. Strong evidence suggests that circulating humoral mediators play a key role in signal transduction, but their identities still need to be established. Our study sought to identify potential circulating RIPC mediators using a proteomic approach. Rats were exposed to 10-min limb ischemia followed by 5- (RIPC 5') or 10-min (RIPC 10') reperfusion prior to blood sampling. The control group only underwent blood sampling. Plasma samples were isolated for proteomic analysis using surface-enhanced laser desorption and ionization - time of flight - mass spectrometry (SELDI-TOF-MS). A total of seven proteins, including haptoglobin and transthyretin, were detected as up- or down-regulated in response to RIPC. These proteins had previously been identified as associated with organ protection, anti-inflammation, and various cellular and molecular responses to ischemia. In conclusion, this study indicates that RIPC results in significant modulations of plasma proteome.


Assuntos
Precondicionamento Isquêmico , Plasma/metabolismo , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Masculino , Dados de Sequência Molecular , Ratos , Ratos Wistar
3.
PLoS One ; 8(10): e77211, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155931

RESUMO

BACKGROUND: Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy in clinical settings. Despite convincing evidence of the critical role played by circulating humoral mediators, their actual identities remain unknown. In this study, we aimed to identify RIPC-induced humoral mediators using a proteomic approach. METHODS: and Results Rats were exposed to 10-min limb ischemia followed by 5- (RIPC 5') or 10-min (RIPC 10') reperfusion prior to blood sampling. The control group only underwent blood sampling. Plasma samples were analyzed using surface-enhanced laser desorption and ionization - time of flight - mass spectrometry (SELDI-TOF-MS). Three protein peaks were selected for their significant increase in RIPC 10'. They were identified and confirmed as apolipoprotein A-I (ApoA-I). Additional rats were exposed to myocardial ischemia-reperfusion (I/R) and assigned to one of the following groups RIPC+myocardial infarction (MI) (10-min limb ischemia followed by 10-min reperfusion initiated 20 minutes prior to myocardial I/R), ApoA-I+MI (10 mg/kg ApoA-I injection 10 minutes before myocardial I/R), and MI (no further intervention). In comparison with untreated MI rats, RIPC reduced infarct size (52.2±3.7% in RIPC+MI vs. 64.9±2.6% in MI; p<0.05). Similarly, ApoA-I injection decreased infarct size (50.9±3.8%; p<0.05 vs. MI). CONCLUSIONS: RIPC was associated with a plasmatic increase in ApoA-I. Furthermore, ApoA-I injection before myocardial I/R recapitulated the cardioprotection offered by RIPC in rats. This data suggests that ApoA-I may be a protective blood-borne factor involved in the RIPC mechanism.


Assuntos
Apolipoproteína A-I/metabolismo , Precondicionamento Isquêmico , Animais , Cardiotônicos/metabolismo , Ensaio de Imunoadsorção Enzimática , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Proteômica , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Am J Physiol Heart Circ Physiol ; 303(7): H871-7, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22886414

RESUMO

Remote ischemic conditioning (RCond) induced by short periods of ischemia and reperfusion of an organ or tissue before myocardial reperfusion is an attractive strategy of cardioprotection in the context of acute myocardial infarction. Nonetheless, its mechanism remains unknown. A humoral factor appears to be involved, although its identity is currently unknown. We hypothesized that the circulating microparticles (MPs) are the link between the remote tissue and the heart. MPs from rats and healthy humans undergoing RCond were characterized. In rats, RCond was induced by 10 min of limb ischemia. In humans, RCond was induced by three cycles of 5-min inflation and 5-min deflation of a blood-pressure cuff. In the second part of the study, rats underwent 40 min myocardial ischemia followed by 2 h reperfusion. Infarct size was measured and compared among three groups of rats: 1) myocardial infarction alone (MI) (n = 6); 2) MI + RCond started 20 min after coronary ligation (n = 6); and 3) MI + injection of RCond-derived rat MPs (MI + MPs) (n = 5). MPs from endothelial cells (CD54(+) and CD146(+) for rats and humans, respectively) and procoagulant MPs (Annexin V(+)) markedly increased after RCond, both in rats and humans. RCond reduced infarct size (24.4 ± 5.9% in MI + RCond vs. 54.6 ± 4.7% in MI alone; P < 0.01). Infarct size did not decrease in MI + MPs compared with MI alone (50.2 ± 6.4% vs. 54.6 ± 4.7%, not significantly different). RCond increased endothelium-derived and procoagulant MPs in both rats and humans. However, MP release did not appear to be a biological vector of RCond in our model.


Assuntos
Micropartículas Derivadas de Células/patologia , Endotélio Vascular/patologia , Membro Posterior/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Transdução de Sinais , Extremidade Superior/irrigação sanguínea , Adulto , Animais , Biomarcadores/sangue , Coagulação Sanguínea , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/transplante , Constrição , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/transplante , Humanos , Masculino , Infarto do Miocárdio/sangue , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar , Fatores de Tempo , Torniquetes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA