Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 105(5): 359-373, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38458773

RESUMO

Dual amylin and calcitonin receptor agonists (DACRAs) show promise as efficacious therapeutics for treatment of metabolic disease, including obesity. However, differences in efficacy in vivo have been observed for individual DACRAs, indicating that detailed understanding of the pharmacology of these agents across target receptors is required for rational drug development. To date, such understanding has been hampered by lack of direct, subtype-selective, functional assays for the amylin receptors (AMYRs). Here, we describe the generation of receptor-specific assays for recruitment of Venus-tagged Gs protein through fusion of luciferase to either the human calcitonin receptor (CTR), human receptor activity-modifying protein (RAMP)-1, RAMP1 (AMY1R), human RAMP2 (AMY2R), or human RAMP3 (AMY3R). These assays revealed a complex pattern of receptor activation by calcitonin, amylin, or DACRA peptides that was distinct at each receptor subtype. Of particular note, although both of the CT-based DACRAs, sCT and AM1784, displayed relatively similar behaviors at CTR and AMY1R, they generated distinct responses at AMY2R and AMY3R. These data aid the rationalization of in vivo differences in response to DACRA peptides in rodent models of obesity. Direct assessment of the pharmacology of novel DACRAs at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases. SIGNIFICANCE STATEMENT: Amylin receptors (AMYRs) are important obesity targets. Here we describe a novel assay that allows selective functional assessment of individual amylin receptor subtypes that provides unique insight into the pharmacology of potential therapeutic ligands. Direct assessment of the pharmacology of novel agonists at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases.


Assuntos
Doenças Metabólicas , Neuropeptídeos , Humanos , Receptores da Calcitonina/metabolismo , Proteínas Modificadoras da Atividade de Receptores , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Receptores de Peptídeos/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Obesidade
2.
J Pharmacol Exp Ther ; 377(3): 417-440, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33727283

RESUMO

Obesity and associated comorbidities are a major health burden, and novel therapeutics to help treat obesity are urgently needed. There is increasing evidence that targeting the amylin receptors (AMYRs), heterodimers of the calcitonin G protein-coupled receptor (CTR) and receptor activity-modifying proteins, improves weight control and has the potential to act additively with other treatments such as glucagon-like peptide-1 receptor agonists. Recent data indicate that AMYR agonists, which can also independently activate the CTR, may have improved efficacy for treating obesity, even though selective activation of CTRs is not efficacious. AM833 (cagrilintide) is a novel lipidated amylin analog that is undergoing clinical trials as a nonselective AMYR and CTR agonist. In the current study, we have investigated the pharmacology of AM833 across 25 endpoints and compared this peptide with AMYR selective and nonselective lipidated analogs (AM1213 and AM1784), and the clinically used peptide agonists pramlintide (AMYR selective) and salmon CT (nonselective). We also profiled human CT and rat amylin as prototypical selective agonists of CTR and AMYRs, respectively. Our results demonstrate that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation. SIGNIFICANCE STATEMENT: AM833 is a novel nonselective agonist of calcitonin family receptors that has demonstrated efficacy for the treatment of obesity in phase 2 clinical trials. This study demonstrates that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation when compared with other selective and nonselective calcitonin receptor and amylin receptor agonists. The present data provide mechanistic insight into the actions of AM833.


Assuntos
Calcitonina , Precursores de Proteínas , Animais , Masculino , Ratos , Receptores da Calcitonina
3.
ACS Pharmacol Transl Sci ; 2(1): 31-51, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32219215

RESUMO

The calcitonin receptor (CTR) is a class B G protein-coupled receptor (GPCR) that responds to the peptide hormone calcitonin (CT). CTs are clinically approved for the treatment of bone diseases. We previously reported a 4.1 Å structure of the activated CTR bound to salmon CT (sCT) and heterotrimeric Gs protein by cryo-electron microscopy (Liang, Y.-L., et al. Phase-plate cryo- EM structure of a class B GPCR-G protein complex. Nature 2017, 546, 118-123). In the current study, we have reprocessed the electron micrographs to yield a 3.3 Å map of the complex. This has allowed us to model extracellular loops (ECLs) 2 and 3, and the peptide N-terminus that previously could not be resolved. We have also performed alanine scanning mutagenesis of ECL1 and the upper segment of transmembrane helix 1 (TM1) and its extension into the receptor extracellular domain (TM1 stalk), with effects on peptide binding and function assessed by cAMP accumulation and ERK1/2 phosphorylation. These data were combined with previously published alanine scanning mutagenesis of ECL2 and ECL3 and the new structural information to provide a comprehensive 3D map of the molecular surface of the CTR that controls binding and signaling of distinct CT and related peptides. The work highlights distinctions in how different, related, class B receptors may be activated. The new mutational data on the TM1 stalk and ECL1 have also provided critical insights into the divergent control of cAMP versus pERK signaling and, collectively with previous mutagenesis data, offer evidence that the conformations linked to these different signaling pathways are, in many ways, mutually exclusive. This study furthers our understanding of the complex nature of signaling elicited by GPCRs and, in particular, that of the therapeutically important class B subfamily.

4.
ACS Pharmacol Transl Sci ; 2(3): 183-197, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32219220

RESUMO

Amylin is coexpressed with insulin in pancreatic islet ß-cells and has potent effects on gastric emptying and food intake. The effect of amylin on satiation has been postulated to involve AMY3 receptors (AMY3R) that are heteromers of the calcitonin receptor (CTR) and receptor activity-modifying protein 3 (RAMP3). Understanding the molecular control of signaling through the AMY3R is thus important for peptide drug targeting of this receptor. We have previously used alanine scanning mutagenesis to study the contribution of the extracellular surface of the CTR to binding and signaling initiated by calcitonin (CT) and related peptides (Dal Maso, E., et al. (2019) The molecular control of calcitonin receptor signaling. ACS Pharmacol. Transl. Sci. 2, 31-51). That work revealed ligand- and pathway-specific effects of mutation, with extracellular loops (ECLs) 2 and 3 particularly important in the distinct propagation of signaling mediated by individual peptides. In the current study, we have used equivalent alanine scanning of ECL2 and ECL3 of the CTR in the context of coexpression with RAMP3 to form AMY3Rs, to examine functional affinity and efficacy of peptides in cAMP accumulation and extracellular signal-regulated kinase (ERK) phosphorylation (pERK). The effect of mutation was determined on representatives of the three major distinct classes of CT peptide, salmon CT (sCT), human CT (hCT), and porcine CT (pCT), as well as rat amylin (rAmy) or human α-CGRP (calcitonin gene-related peptide, hCGRP) whose potency is enhanced by RAMP interaction. We demonstrate that the dynamic nature of CTR ECL2 and ECL3 in propagation of signaling is fundamentally altered when complexed with RAMP3 to form the AMY3R, despite only having predicted direct interactions with ECL2. Moreover, the work shows that the role of these loops in receptor signaling is highly peptide dependent, illustrating that even subtle changes to peptide sequence may change signaling output downstream of the receptor.

5.
Biochem Pharmacol ; 150: 214-244, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29454620

RESUMO

Class B peptide hormone GPCRs are targets for the treatment of major chronic disease. Peptide ligands of these receptors display biased agonism and this may provide future therapeutic advantage. Recent active structures of the calcitonin (CT) and glucagon-like peptide-1 (GLP-1) receptors reveal distinct engagement of peptides with extracellular loops (ECLs) 2 and 3, and mutagenesis of the GLP-1R has implicated these loops in dynamics of receptor activation. In the current study, we have mutated ECLs 2 and 3 of the human CT receptor (CTR), to interrogate receptor expression, peptide affinity and efficacy. Integration of these data with insights from the CTR and GLP-1R active structures, revealed marked diversity in mechanisms of peptide engagement and receptor activation between the CTR and GLP-1R. While the CTR ECL2 played a key role in conformational propagation linked to Gs/cAMP signalling this was mechanistically distinct from that of GLP-1R ECL2. Moreover, ECL3 was a hotspot for distinct ligand- and pathway-specific effects, and this has implications for the future design of biased agonists of class B GPCRs.


Assuntos
Líquido Extracelular/metabolismo , Receptores da Calcitonina/agonistas , Receptores da Calcitonina/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Relação Dose-Resposta a Droga , Líquido Extracelular/efeitos dos fármacos , Humanos , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores da Calcitonina/química , Receptores da Calcitonina/genética
6.
Antiviral Res ; 151: 8-19, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29337164

RESUMO

Although the alphavirus Venezuelan equine encephalitis virus (VEEV) has been the cause of multiple outbreaks resulting in extensive human and equine mortality and morbidity, there are currently no anti-VEEV therapeutics available. VEEV pathogenicity is largely dependent on targeting of the viral capsid protein (CP) to the host cell nucleus through the nuclear transporting importin (Imp) α/ß1 heterodimer. Here we perform a high-throughput screen, combined with nested counterscreens to identify small molecules able to inhibit the Impα/ß1:CP interaction for the first time. Several compounds were able to significantly reduce viral replication in infected cells. Compound G281-1564 in particular could inhibit VEEV replication at low µM concentration, while showing minimal toxicity, with steady state and dynamic quantitative microscopic measurements confirming its ability to inhibit CP nuclear import. This study establishes the principle that inhibitors of CP nucleocytoplasmic trafficking can have potent antiviral activity against VEEV, and represents a platform for future development of safe anti-VEEV compounds with high efficacy and specificity.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/metabolismo , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Encefalomielite Equina Venezuelana/virologia , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Replicação Viral/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Antivirais/química , Sobrevivência Celular , Chlorocebus aethiops , Encefalomielite Equina Venezuelana/metabolismo , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Concentração Inibidora 50 , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA