Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 281(21): 14882-92, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16556595

RESUMO

Among 10 adult mouse tissues tested, the p204 protein levels were highest in heart and skeletal muscle. We described previously that the MyoD-inducible p204 protein is required for the differentiation of cultured murine C2C12 skeletal muscle myoblasts to myotubes. Here we report that p204 was also required for the differentiation of cultured P19 murine embryonal carcinoma stem cells to beating cardiac myocytes. As shown by others, this process can be triggered by dimethyl sulfoxide (DMSO). We established that DMSO induced the formation of 204RNA and p204. Ectopic p204 could partially substitute for DMSO in inducing differentiation, whereas ectopic 204 antisense RNA inhibited the differentiation. Experiments with reporter constructs, including regulatory regions from the Ifi204 gene (encoding p204) in P19 cells and in cultured newborn rat cardiac myocytes, as well as chromatin coimmunoprecipitations with transcription factors, revealed that p204 expression was synergistically transactivated by the cardiac Gata4, Nkx2.5, and Tbx5 transcription factors. Furthermore, ectopic p204 triggered the expression of Gata4 and Nkx2.5 in P19 cells. p204 contains a nuclear export signal and was partially translocated to the cytoplasm during the differentiation. p204 from which the nuclear export signal was deleted was not translocated, and it did not induce differentiation. The various mechanisms by which p204 promoted the differentiation are reported in the accompanying article (Ding, B., Liu, C., Huang, Y., Yu, J., Kong, W., and Lengyel, P. (2006) J. Biol. Chem. 281, 14893-14906).


Assuntos
Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Fosfoproteínas/química , Fosfoproteínas/fisiologia , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteína Homeobox Nkx-2.5 , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo
2.
FASEB J ; 20(3): 479-81, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16423874

RESUMO

Advances in understanding the relationship between protein structure and DNA binding specificity have made it possible to engineer zinc finger protein (ZFP) transcription factors to specifically activate or repress virtually any gene. To evaluate the potential clinical utility of this approach for peripheral vascular disease, we investigated the ability of an engineered vascular endothelial growth factor (VEGFa)-activating ZFP (MVZ+426b) to induce angiogenesis and rescue hindlimb ischemia in a murine model. Hindlimb ischemia was surgically induced in advanced-age C57/BL6 mice. Adenovirus (Ad) encoding either MVZ+426b or the fluorescent marker dsRed was delivered to the adducter muscle of the ischemic hindlimb, and the effects on blood flow, limb salvage, and vascularization were assessed. Ad-MVZ+426b induced expression of VEGFa at the mRNA and protein levels and stimulated a significant increase in vessel counts in the ischemic limb. This was accompanied by significantly increased blood flow and limb salvage as measured serially for 4 wk. These data demonstrate that activation of the endogenous VEGFa gene by an engineered ZFP can induce angiogenesis in a clinically relevant model and further document the feasibility of designing ZFPs to therapeutically regulate gene expression in vivo.


Assuntos
Regulação da Expressão Gênica/genética , Terapia Genética , Vetores Genéticos/uso terapêutico , Isquemia/terapia , Neovascularização Fisiológica/genética , Fatores de Transcrição/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Dedos de Zinco/fisiologia , Adenoviridae/genética , Envelhecimento , Sequência de Aminoácidos , Animais , Velocidade do Fluxo Sanguíneo , Estudos de Viabilidade , Genes Sintéticos , Membro Posterior/irrigação sanguínea , Fluxometria por Laser-Doppler , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Engenharia de Proteínas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Recombinantes , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fator A de Crescimento do Endotélio Vascular/genética , Dedos de Zinco/genética
3.
PLoS Biol ; 2(10): e288, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15328538

RESUMO

The physiological flux of oxygen is extreme in exercising skeletal muscle. Hypoxia is thus a critical parameter in muscle function, influencing production of ATP, utilization of energy-producing substrates, and manufacture of exhaustion-inducing metabolites. Glycolysis is the central source of anaerobic energy in animals, and this metabolic pathway is regulated under low-oxygen conditions by the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha). To determine the role of HIF-1alpha in regulating skeletal muscle function, we tissue-specifically deleted the gene encoding the factor in skeletal muscle. Significant exercise-induced changes in expression of genes are decreased or absent in the skeletal-muscle HIF-1alpha knockout mice (HIF-1alpha KOs); changes in activities of glycolytic enzymes are seen as well. There is an increase in activity of rate-limiting enzymes of the mitochondria in the muscles of HIF-1alpha KOs, indicating that the citric acid cycle and increased fatty acid oxidation may be compensating for decreased flow through the glycolytic pathway. This is corroborated by a finding of no significant decreases in muscle ATP, but significantly decreased amounts of lactate in the serum of exercising HIF-1alpha KOs. This metabolic shift away from glycolysis and toward oxidation has the consequence of increasing exercise times in the HIF-1alpha KOs. However, repeated exercise trials give rise to extensive muscle damage in HIF-1alpha KOs, ultimately resulting in greatly reduced exercise times relative to wild-type animals. The muscle damage seen is similar to that detected in humans in diseases caused by deficiencies in skeletal muscle glycogenolysis and glycolysis. Thus, these results demonstrate an important role for the HIF-1 pathway in the metabolic control of muscle function.


Assuntos
Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Alelos , Animais , Creatina Quinase/metabolismo , Cruzamentos Genéticos , Deleção de Genes , Genótipo , Glucose/metabolismo , Glicogênio/metabolismo , Glicólise , Hematócrito , Hemoglobinas/metabolismo , Hipóxia , Ácido Láctico/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Oxigênio/metabolismo , Esforço Físico , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
FASEB J ; 18(10): 1138-40, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15132980

RESUMO

At a resting pulse rate the heart consumes almost twice-as much oxygen per gram tissue as the brain and more than 43 times more than resting skeletal muscle (1). Unlike skeletal muscle, cardiac muscle cannot sustain anaerobic metabolism. Balancing oxygen demand with availability is crucial to cardiac function and survival, and regulated gene expression is a critical element of maintaining this balance. We investigated the role of the hypoxia-inducible transcription factor HIF-1alpha in maintaining this balance under normoxic conditions. Cardiac myocyte-specific HIF-1alpha gene deletion in the hearts of genetically engineered mice caused reductions in contractility, vascularization, high-energy phosphate content, and lactate production. This was accompanied by altered calcium flux and altered expression of genes involved in calcium handling, angiogenesis, and glucose metabolism. These findings support a central role for HIF-1alpha in coordinating energy availability and utilization in the heart and have implications for disease states in which cardiac oxygen delivery is impaired. Heart muscle requires a constant supply of oxygen. When oxygen supply does not match myocardial demand cardiac contractile dysfunction occurs, and prolongation of this mismatch leads to apoptosis and necrosis. Coordination of oxygen supply and myocardial demand involves immediate adaptations, such as coronary vasodilatation, and longer-term adaptations that include altered patterns of gene expression (2-4). How the expression of multiple genes is coordinated with oxygen availability in the heart and the impact of oxygen-dependent gene expression on cardiac function are insufficiently understood. Further elucidating these relationships may help clarify the molecular pathology of various cardiovascular disease states, including ischemic cardiomyopathy and myocardial hibernation (5, 6).


Assuntos
Sinalização do Cálcio/fisiologia , Circulação Coronária/fisiologia , Proteínas de Ligação a DNA/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Metabolismo Energético , Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Testes de Função Cardíaca , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/fisiologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Consumo de Oxigênio , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica
5.
Proc Natl Acad Sci U S A ; 99(11): 7734-9, 2002 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-12032352

RESUMO

Angiogenesis is regulated by means of a balance between activators and inhibitors. However, little is known regarding the regulation of the quiescent state of adult vessels. Corticotropin-releasing factor receptor 2 (CRFR2) is found in both endothelial and smooth muscle cells (SMCs) in the vasculature, where its function has remained elusive. We have investigated the role of CRFR2 as a determinant of tissue vascularization by comparing control and CRFR2-deficient mice with immunohistological and morphometric techniques. To define the mechanisms responsible for CRFR2 inhibition of angiogenesis, we have also examined in vitro the effect of ligand activation on cell proliferation, cell cycle protein phosphorylation, and capillary tube formation. Our results demonstrate that mice deficient for CRFR2 become hypervascularized postnatally. Activation of this receptor in vitro results in reduced vascular endothelial growth factor (VEGF) release from SMCs, an inhibition of SMC proliferation, and inhibition of capillary tube formation in collagen gels. Treatment of a subcutaneously injected gel matrix with a CRFR2 agonist inhibits growth factor-induced vascularization. Western blots show that cell cycle retinoblastoma protein, which is essential for cell cycle progression, is decreased by CRFR2 agonist treatment in SMCs. These results suggest that CRFR2 is a critical component of a pathway necessary for tonic inhibition of adult neovascularization. CRFR2 may be a potential target for therapeutic modulation of angiogenesis in cancer and ischemic cardiovascular disease.


Assuntos
Inibidores da Angiogênese/farmacologia , Capilares/fisiologia , Endotélio Vascular/fisiologia , Músculo Liso Vascular/fisiologia , Neovascularização Fisiológica/fisiologia , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Animais , Divisão Celular/fisiologia , Células Cultivadas , Fatores de Crescimento Endotelial/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Linfocinas/farmacologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/deficiência , Receptores de Hormônio Liberador da Corticotropina/genética , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA