Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys Rev ; 14(1): 403-412, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35340599

RESUMO

In the Carboniferous, insects evolved flight. Intense selection drove for high performance and approximately 100 million years later, Hymenoptera (bees, wasps and ants) emerged. Some species had proportionately small wings, with apparently impossible aerodynamic challenges including a need for high frequency flight muscles (FMs), powered exclusively off aerobic pathways and resulting in extreme aerobic capacities. Modern insect FMs are the most refined and form large dense blocks that occupy 90% of the thorax. These can beat wings at 200 to 230 Hz, more than double that achieved by standard neuromuscular systems. To do so, rapid repolarisation was circumvented through evolution of asynchronous stimulation, stretch activation, elastic recoil and a paradoxically slow Ca2+ reuptake. While the latter conserves ATP, considerable ATP is demanded at the myofibrils. FMs have diminished sarcoplasmic volumes, and ATP is produced solely by mitochondria, which pack myocytes to maximal limits and have very dense cristae. Gaseous oxygen is supplied directly to mitochondria. While FMs appear to be optimised for function, several unusual paradoxes remain. FMs lack any significant equivalent to the creatine kinase shuttle, and myofibrils are twice as wide as those of within cardiomyocytes. The mitochondrial electron transport systems also release large amounts of reactive oxygen species (ROS) and respiratory complexes do not appear to be present at any exceptional level. Given that the loss of the creatine kinase shuttle and elevated ROS impairs heart function, we question how do FM shuttle adenylates at high rates and tolerate oxidative stress conditions that occur in diseased hearts?

2.
Chemosphere ; 288(Pt 2): 132590, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34662640

RESUMO

The presence of multiple chemicals in aquatic ecosystems makes evaluation of their real impact on the biota difficult. Integrated biomarkers are therefore needed to evaluate how these chemicals contribute to environmental degradation. The aims of the present study were to evaluate responses to and effects of marine pollution using a series of biomarkers through multivariate analyses. Transcriptional responses of cyp1a (cytochrome P450), mt (metallothionein), vtg (vitellogenin) and cyp19b (cytochrome P450 aromatase); branchial and hepatic histological alterations; and Fulton condition factors (CF) were evaluated, as well as the metals and polycyclic aromatic hydrocarbons present in Forsterygion capito in Auckland, New Zealand. Sites were selected along a contamination gradient: four highly contaminated sites and four less contaminated. Molecular responses with a higher relative expression of the mt and cyp1a genes were detected at a highly contaminated site (Panmure). Several histological lesion types were found in the livers of fish inhabiting both types of sites, but gill lesions were present primarily at highly contaminated sites. In terms of general health status, the lowest CF values were overwhelmingly found in fish from the same site (Panmure). The multivariate approach revealed that telangiectasia and hyperplasia were associated with the presence of chemicals, and these showed negative associations with the CF values, with fish from three highly contaminated sites being most affected. In conclusion, the multivariate approach helped to integrate these biological markers in this blennioid fish, thus providing a more holistic view of the complex chemical mixtures involved. Future studies should implement these analyses.


Assuntos
Ecossistema , Metalotioneína , Animais , Biomarcadores , Água , Poluição da Água
3.
Environ Pollut ; 263(Pt A): 114438, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32283451

RESUMO

Marine coastal contamination caused by human activity is a major issue worldwide. The implementation of effective pollution monitoring programs, especially in coastal areas, is important and urgent. The use of biological, physiological, or biochemical measurements to monitor the impacts of pollution has garnered increasing interest, particularly for the development of new non-invasive tools to assess water pollution. Fish skin mucus is in direct contact with the marine environment, making it a favourable microenvironment for the formation of biofilm bacterial communities. In this study, we developed a non-invasive technique, sampling fish skin mucus to determine and analyse bacterial community composition using next-generation sequencing. We hypothesised that bacterial communities associated with the skin mucus of a common harbour benthic blennioid triplefin fish, Forsterygion capito, would reflect conditions of different marine environments. We detected clear differences in bacterial community alpha-diversity between contaminated and reference sites. Beta-diversity analysis also revealed differences in the bacterial community structure of the skin mucus of fish inhabiting different geographical areas. The relative abundance of different bacterial orders varied among sites, as determined by linear discriminant analysis (LDA) and effect size (LEfSe) analyses. The observed variation in bacterial community compositions correlated more strongly with variation in hydrocarbons than to various metal concentrations. Using advanced DNA sequencing technologies, we have developed a novel non-invasive, low-cost and effective tool to monitor the impacts of pollution through analysis of the bacterial communities associated with fish skin mucus.


Assuntos
Muco , Poluição da Água , Animais , Bactérias/genética , DNA Bacteriano , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA