Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 78(2): 246-52, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23237081

RESUMO

Chlorosulfonyl isocyanate (CSI) is reported to react with hydrocarbon alkenes by a stepwise dipolar pathway to give N-chlorosulfonyl-ß-lactams that are readily reduced to ß-lactams. Substitution of a vinyl hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so that a concerted pathway is favored. Rate constants were measured for reactions of CSI with monofluoroalkenes and some hydrocarbon alkenes. Activation parameters for two hydrocarbon alkenes and two monofluoroalkenes support this change in mechanism. A plot generated from the natural log of rate constants vs ionization potentials (IP) indicates that fluoroalkenes with IP values >8.9 eV react by a concerted process. Electron-rich monofluoroalkenes with IP values <8.5 eV were found to react by a single-electron transfer (SET) pathway. Hydrocarbon alkenes were also found to react by this dipolar stepwise SET intermediate rather than the previously accepted stepwise dipolar pathway. Data support a pre-equilibrium complex on the reaction pathway just before the rate-determining step of the concerted pathway and a SET intermediate for the stepwise reactions. When the reactions are carried out at lower temperatures, the equilibrium shifts toward the complex or SET intermediate enhancing the synthetic utility of these reactions. Kinetic data also support formation of a planar transition state rather than the orthogonal geometry as reported for ketene [2 + 2] cycloadditions.

2.
J Org Chem ; 75(22): 7913-6, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20964338

RESUMO

Concerted reactions are indicated for the electrophilic addition of chlorosulfonyl isocyanate with monofluoroalkenes. A vinyl fluorine atom on an alkene raises the energy of a stepwise transition state more than the energy of the competing concerted pathway. This energy shift induces CSI to react with monofluoroalkenes by a one-step process. The low reactivity of CSI with monofluoroalkenes, stereospecific reactions, the absence of 2:1 uracil products with neat fluoroalkenes, and quantum chemical calculations support a concerted pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA