Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 422: 108533, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35671600

RESUMO

Cochlear synaptopathy, the loss of or damage to connections between auditory-nerve fibers (ANFs) and inner hair cells (IHCs), is a prominent pathology in noise-induced and age-related hearing loss. Here, we investigated if degeneration of the olivocochlear (OC) efferent innervation is also a major aspect of the synaptopathic ear, by quantifying the volume and spatial organization of its cholinergic and dopaminergic components, using antibodies to vesicular acetylcholine transporter (VAT) and tyrosine hydroxylase (TH), respectively. CBA/CaJ male mice were examined 1 day to 8 months after a synaptopathic noise exposure, and compared to unexposed age-matched controls and unexposed aged mice at 24-28 months. In normal ears, cholinergic lateral (L)OC terminals were denser in the apical half of the cochlea and on the modiolar side of the inner hair cells (IHCs), where ANFs of low-spontaneous rate are typically found, while dopaminergic terminals were more common in the basal third of the cochlea and, re the IHC axes, were offset towards the habenula with respect to cholinergic terminals. The noise had only small and transient effects on the density of LOC innervation, its spatial organization around the IHC axes, or the extent to which TH and VAT signal were colocalized. The synaptopathic noise also had relatively small and transient effects on cholinergic innervation density in the outer hair cell (OHC) area, which normally peaks in the 16 kHz region and falls monotonically towards higher and lower frequencies. In contrast, in the aged ears, there was massive degeneration of OHC efferents, especially in the apical half of the cochlea, where there was also significant loss of OHCs. In the IHC area, there was significant loss of cholinergic terminals in both apical and basal regions and of dopaminergic innervation in the basal half. Furthermore, the cholinergic terminals in the aged ears spread from their normal clustering near the IHC basolateral pole, where the ANF synapses are found, to positions up and down the IHC somata and regions of the neuropil closer to the habenula. This apparent migration was most striking in the apex, where the hair cell pathology was greatest, and may be a harbinger of impending hair cell death.


Assuntos
Cóclea , Perda Auditiva Provocada por Ruído , Masculino , Camundongos , Animais , Camundongos Endogâmicos CBA , Cóclea/fisiologia , Ruído/efeitos adversos , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva Provocada por Ruído/patologia , Colinérgicos/metabolismo
2.
Front Cell Neurosci ; 15: 684706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434091

RESUMO

In CBA/CaJ mice, confocal analysis has shown that acoustic overexposure can immediately destroy synapses between auditory-nerve fibers (ANFs) and their peripheral targets, the inner hair cells (IHCs), and that years later, a corresponding number of ANF cell bodies degenerate. In guinea pig, post-exposure disappearance of pre-synaptic ribbons can be equally dramatic, however, post-exposure recovery to near-baseline counts has been reported. Since confocal counts are confounded by thresholding issues, the fall and rise of synaptic ribbon counts could represent "regeneration," i.e., terminal retraction, re-extension and synaptogenesis, or "recovery," i.e., down- and subsequent up-regulation of synaptic markers. To clarify, we counted pre-synaptic ribbons, assessed their juxtaposition with post-synaptic receptors, measured the extension of ANF terminals, and quantified the spatial organization and size gradients of these synaptic elements around the hair cell. Present results in guinea pigs exposed as adults (14 months), along with prior results in juveniles (1 month), suggest there is post-exposure neural regeneration in the guinea pig, but not the CBA/CaJ mouse, and that this regenerative capacity extends into adulthood. The results also show, for the first time, that the acute synaptic loss is concentrated on the modiolar side of IHCs, consistent with a selective loss of the high-threshold ANFs with low spontaneous rates. The morphological similarities between the post-exposure neurite extension and synaptogenesis, seen spontaneously in the guinea pig, and in CBA/CaJ only with forced overexpression of neurotrophins, suggest that the key difference may be in the degree of sustained or injury-induced expression of these signaling molecules in the cochlea.

3.
Sci Rep ; 10(1): 19945, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203940

RESUMO

Overexposure to intense noise can destroy the synapses between auditory nerve fibers and their hair cell targets without destroying the hair cells themselves. In adult mice, this synaptopathy is immediate and largely irreversible, whereas, in guinea pigs, counts of immunostained synaptic puncta can recover with increasing post-exposure survival. Here, we asked whether this recovery simply reflects changes in synaptic immunostaining, or whether there is actual retraction and extension of neurites and/or synaptogenesis. Analysis of the numbers, sizes and spatial distribution of pre- and post-synaptic markers on cochlear inner hair cells, in guinea pigs surviving from 1 day to 6 months after a synaptopathic exposure, shows dramatic synaptic re-organization during the recovery period in which synapse counts recover from 16 to 91% of normal in the most affected regions. Synaptic puncta move all over the hair cell membrane during recovery, translocating far from their normal positions at the basolateral pole, and auditory-nerve terminals extend towards the hair cell's apical end to re-establish contact with them. These observations provide stronger evidence for spontaneous neural regeneration in a mature mammalian cochlea than can be inferred from synaptic counts alone.


Assuntos
Cóclea/patologia , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva Provocada por Ruído/prevenção & controle , Ruído/efeitos adversos , Recuperação de Função Fisiológica , Regeneração , Sinapses/fisiologia , Animais , Limiar Auditivo , Feminino , Cobaias , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/patologia
5.
Sci Rep ; 9(1): 15362, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653916

RESUMO

Noise exposures causing only transient threshold shifts can destroy auditory-nerve synapses without damaging hair cells. Here, we asked whether virally mediated neurotrophin3 (NT3) overexpression can repair this damage. CBA/CaJ mice at 6 wks were injected unilaterally with adeno-associated virus (AAV) containing either NT3 or GFP genes, via the posterior semicircular canal, 3 wks prior to, or 5 hrs after, noise exposure. Controls included exposed animals receiving vehicle only, and unexposed animals receiving virus. Thresholds were measured 2 wks post-exposure, just before cochleas were harvested for histological analysis. In separate virus-injected animals, unexposed cochleas were extracted for qRT-PCR. The GFP reporter showed that inner hair cells (IHCs) were transfected throughout the cochlea, and outer hair cells mainly in the apex. qRT-PCR showed 4- to 10-fold overexpression of NT3 from 1-21 days post-injection, and 1.7-fold overexpression at 40 days. AAV-NT3 delivered prior to noise exposure produced a dose-dependent reduction of synaptopathy, with nearly complete rescue at some cochlear locations. In unexposed ears, NT3 overexpression did not affect thresholds, however GFP overexpression caused IHC loss. In exposed ears, NT3 overexpression increased permanent threshold shifts. Thus, although NT3 overexpression can minimize noise-induced synaptic damage, the forced overexpression may be harmful to hair cells themselves during cochlear overstimulation.


Assuntos
Cóclea/patologia , Dependovirus/metabolismo , Neurotrofina 3/metabolismo , Ruído , Sinapses/patologia , Animais , Limiar Auditivo , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico , Proteínas de Fluorescência Verde/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Neurotrofina 3/genética , Emissões Otoacústicas Espontâneas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinapses/metabolismo
6.
J Cell Biol ; 212(7): 845-60, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27022092

RESUMO

Mammalian stress granules (SGs) contain stalled translation preinitiation complexes that are assembled into discrete granules by specific RNA-binding proteins such as G3BP. We now show that cells lacking both G3BP1 and G3BP2 cannot form SGs in response to eukaryotic initiation factor 2α phosphorylation or eIF4A inhibition, but are still SG-competent when challenged with severe heat or osmotic stress. Rescue experiments using G3BP1 mutants show that phosphomimetic G3BP1-S149E fails to rescue SG formation, whereas G3BP1-F33W, a mutant unable to bind G3BP partner proteins Caprin1 or USP10, rescues SG formation. Caprin1/USP10 binding to G3BP is mutually exclusive: Caprin binding promotes, but USP10 binding inhibits, SG formation. G3BP interacts with 40S ribosomal subunits through its RGG motif, which is also required for G3BP-mediated SG formation. We propose that G3BP mediates the condensation of SGs by shifting between two different states that are controlled by the phosphorylation of S149 and by binding to Caprin1 or USP10.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Grânulos Citoplasmáticos/enzimologia , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Grânulos Citoplasmáticos/genética , DNA Helicases , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Humanos , Microscopia Confocal , Microscopia de Vídeo , Dados de Sequência Molecular , Mutação , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases , Interferência de RNA , Proteínas com Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Transdução de Sinais , Relação Estrutura-Atividade , Transfecção , Ubiquitina Tiolesterase/genética
7.
J Neurosci ; 35(24): 9236-45, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26085645

RESUMO

Normal hearing requires proper differentiation of afferent ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) that carry acoustic information to the brain. Within individual IHCs, presynaptic ribbons show a size gradient with larger ribbons on the modiolar face and smaller ribbons on the pillar face. This structural gradient is associated with a gradient of spontaneous rates and threshold sensitivity, which is essential for a wide dynamic range of hearing. Despite their importance for hearing, mechanisms that direct ribbon differentiation are poorly defined. We recently identified adenomatous polyposis coli protein (APC) as a key regulator of interneuronal synapse maturation. Here, we show that APC is required for ribbon size heterogeneity and normal cochlear function. Compared with wild-type littermates, APC conditional knock-out (cKO) mice exhibit decreased auditory brainstem responses. The IHC ribbon size gradient is also perturbed. Whereas the normal-developing IHCs display ribbon size gradients before hearing onset, ribbon sizes are aberrant in APC cKOs from neonatal ages on. Reporter expression studies show that the CaMKII-Cre used to delete the floxed APC gene is present in efferent olivocochlear (OC) neurons, not IHCs or SGNs. APC loss led to increased volumes and numbers of OC inhibitory dopaminergic boutons on neonatal SGN fibers. Our findings identify APC in efferent OC neurons as essential for regulating ribbon heterogeneity, dopaminergic terminal differentiation, and cochlear sensitivity. This APC effect on auditory epithelial cell synapses resembles interneuronal and nerve-muscle synapses, thereby defining a global role for APC in synaptic maturation in diverse cell types. SIGNIFICANCE STATEMENT: This study identifies novel molecules and cellular interactions that are essential for the proper maturation of afferent ribbon synapses in sensory cells of the inner ear, and for normal hearing.


Assuntos
Proteína da Polipose Adenomatosa do Colo/deficiência , Cóclea/metabolismo , Audição/fisiologia , Neurônios Aferentes/metabolismo , Núcleo Olivar/metabolismo , Sinapses/metabolismo , Estimulação Acústica/métodos , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Cóclea/ultraestrutura , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Knockout , Neurônios Aferentes/ultraestrutura , Núcleo Olivar/ultraestrutura , Sinapses/genética , Sinapses/ultraestrutura
8.
Mol Cell Biol ; 31(3): 517-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21135135

RESUMO

Pulmonary artery hypertension (PAH) is characterized by elevated pulmonary artery resistance and increased medial thickness due to deregulation of vascular remodeling. Inactivating mutations of the BMPRII gene, which encodes a receptor for bone morphogenetic proteins (BMPs), are identified in ∼60% of familial PAH (FPAH) and ∼30% of idiopathic PAH (IPAH) patients. It has been hypothesized that constitutive reduction in BMP signal by BMPRII mutations may cause abnormal vascular remodeling by promoting dedifferentiation of vascular smooth muscle cells (vSMCs). Here, we demonstrate that infusion of the amiloride analog phenamil during chronic-hypoxia treatment in rat attenuates development of PAH and vascular remodeling. Phenamil induces Tribbles homolog 3 (Trb3), a positive modulator of the BMP pathway that acts by stabilizing the Smad family signal transducers. Through induction of Trb3, phenamil promotes the differentiated, contractile vSMC phenotype characterized by elevated expression of contractile genes and reduced cell growth and migration. Phenamil activates the Trb3 gene transcription via activation of the calcium-calcineurin-nuclear factor of activated T cell (NFAT) pathway. These results indicate that constitutive elevation of Trb3 by phenamil is a potential therapy for IPAH and FPAH.


Assuntos
Amilorida/análogos & derivados , Proteínas Morfogenéticas Ósseas/metabolismo , Pulmão/irrigação sanguínea , Fatores de Transcrição NFATC/metabolismo , Artéria Pulmonar/fisiologia , Transdução de Sinais/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido , Amilorida/farmacologia , Animais , Sequência de Bases , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/complicações , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Modelos Biológicos , Dados de Sequência Molecular , Contração Muscular/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Canais de Sódio/metabolismo , Ativação Transcricional/efeitos dos fármacos
9.
Nature ; 468(7327): 1067-73, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20871596

RESUMO

Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.


Assuntos
Azirinas/farmacologia , Di-Hidropiridinas/farmacologia , Modelos Moleculares , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Azirinas/síntese química , Azirinas/química , Sítios de Ligação , Carcinoma de Células Escamosas/fisiopatologia , Proteínas de Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Feminino , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Neoplasias Cutâneas/fisiopatologia , Estereoisomerismo
10.
J Biol Chem ; 285(14): 10959-68, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20129916

RESUMO

Angiogenin (ANG) is a secreted ribonuclease that cleaves tRNA to initiate a stress-response program in mammalian cells. Here we show that ANG inhibits protein synthesis and promotes arsenite- and pateamine A-induced assembly of stress granules (SGs). These effects are abrogated in cells transfected with the ANG inhibitor RNH1. Transfection of natural or synthetic 5'- but not 3'-tRNA fragments (tRNA-derived stress-induced RNAs; tiRNAs) induces the phospho-eukaryotic translation initiation factor 2alpha-independent assembly of SGs. Natural 5'-tiRNAs but not 3'-tiRNAs are capped with a 5'-monophosphate that is required for optimal SG assembly. These findings reveal that SG assembly is a component of the ANG- and tiRNA-induced stress response program.


Assuntos
Neoplasias Ósseas/patologia , Grânulos Citoplasmáticos/metabolismo , Osteossarcoma/patologia , RNA de Transferência/metabolismo , Ribonuclease Pancreático/farmacologia , Arsenitos/farmacologia , Western Blotting , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Proteínas de Transporte/farmacologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Compostos de Epóxi/farmacologia , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Fator de Iniciação 2 em Eucariotos/metabolismo , Imunofluorescência , Humanos , Macrolídeos/farmacologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Estresse Oxidativo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , RNA de Transferência/química , RNA de Transferência/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teratogênicos/farmacologia , Tiazóis/farmacologia , Células Tumorais Cultivadas
11.
Nat Immunol ; 10(8): 899-906, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19561612

RESUMO

Induction of macrophage necrosis is a strategy used by virulent Mycobacterium tuberculosis (Mtb) to avoid innate host defense. In contrast, attenuated Mtb causes apoptosis, which limits bacterial replication and promotes T cell cross-priming by antigen-presenting cells. Here we show that Mtb infection causes plasma membrane microdisruptions. Resealing of these lesions, a process crucial for preventing necrosis and promoting apoptosis, required translocation of lysosomal and Golgi apparatus-derived vesicles to the plasma membrane. Plasma membrane repair depended on prostaglandin E(2) (PGE(2)), which regulates synaptotagmin 7 (Syt-7), the calcium sensor involved in the lysosome-mediated repair mechanism. By inducing production of lipoxin A(4) (LXA(4)), which blocks PGE(2) biosynthesis, virulent Mtb prevented membrane repair and induced necrosis. Thus, virulent Mtb impairs macrophage plasma membrane repair to evade host defenses.


Assuntos
Membrana Celular/patologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Animais , Apoptose , Membrana Celular/imunologia , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , Dinoprostona/metabolismo , Complexo de Golgi/fisiologia , Humanos , Lipoxinas/metabolismo , Lisossomos/fisiologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Necrose , Sinaptotagminas/metabolismo , Virulência
12.
Methods Enzymol ; 448: 521-52, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19111193

RESUMO

Nuclear mRNA domains such as nucleoli, speckles, Cajal bodies, and gems demonstrate that RNA function and morphology are inextricably linked; granular mRNA structures are self-generated in tandem with metabolic activity. Similarly, cytoplasmic compartmentalization of mRNA into mRNP structures such as stress granules (SGs) and processing bodies (PBs) reiterate the link between function and structure; the assembly of SGs and PBs requires mRNA released from disassembling polysomes on translational arrest. SGs contain mRNA still associated with some of the translational machinery, specifically 40S subunits and a subset of translation initiation factors including eIF3, eIF4F, eIF4B, and PABP. PBs also contain mRNA and eIF4E but lack other preinitiation factors and contain instead a number of proteins associated with mRNA decay such as DCP1a, DCP2, hedls/GE-1, p54/RCK. Many other proteins (e.g., argonaute, FAST, RAP-55, TTP) and microRNAs are present in both SGs and PBs, sometimes shepherding specific mRNA transcripts between the translation and decay machineries. Recently, we described markers and methods to visualize SGs and PBs in fixed cells (Kedersha and Anderson, 2007), but understanding the dynamic nature of SGs and PBs requires live cell imaging. This presents unique challenges, because it requires the overexpression of fluorescently tagged SG/PB marker proteins, which can shift the mRNA equilibrium toward SGs or PBs, thus obscuring the result. We describe stably expressed, fluorescently tagged SG and PB markers that exhibit similar behavior to their endogenous counterparts, thus allowing real-time imaging of SGs and PBs.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Mamíferos/metabolismo , Microscopia/instrumentação , Microscopia/métodos , Estresse Fisiológico , Animais , Biomarcadores , Humanos , Fatores de Tempo
13.
Nat Cell Biol ; 10(10): 1224-31, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18794846

RESUMO

Stress granules (SGs) and processing bodies (PBs) are microscopically visible ribonucleoprotein granules that cooperatively regulate the translation and decay of messenger RNA. Using an RNA-mediated interference-based screen, we identify 101 human genes required for SG assembly, 39 genes required for PB assembly, and 31 genes required for coordinate SG and PB assembly. Although 51 genes encode proteins involved in mRNA translation, splicing and transcription, most are not obviously associated with RNA metabolism. We find that several components of the hexosamine biosynthetic pathway, which reversibly modifies proteins with O-linked N-acetylglucosamine (O-GlcNAc) in response to stress, are required for SG and PB assembly. O-GlcNAc-modified proteins are prominent components of SGs but not PBs, and include RACK1 (receptor for activated C kinase 1), prohibitin-2, glyceraldehyde-3-phosphate dehydrogenase and numerous ribosomal proteins. Our results suggest that O-GlcNAc modification of the translational machinery is required for aggregation of untranslated messenger ribonucleoproteins into SGs. The lack of enzymes of the hexosamine biosynthetic pathway in budding yeast may contribute to differences between mammalian SGs and related yeast EGP (eIF4E, 4G and Pab1 containing) bodies.


Assuntos
Acetilglucosamina/metabolismo , Grânulos Citoplasmáticos/metabolismo , Estruturas Citoplasmáticas/metabolismo , Processamento de Proteína Pós-Traducional , Interferência de RNA , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Arsenitos/farmacologia , Linhagem Celular , Grânulos Citoplasmáticos/efeitos dos fármacos , Estruturas Citoplasmáticas/efeitos dos fármacos , Humanos , Modelos Biológicos , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , Proteínas Ribossômicas/isolamento & purificação , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA