Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 16(4): e20397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37885362

RESUMO

Vernalization requirement is an integral component of flowering in winter-type plants. The availability of winter ecotypes among Camelina species facilitated the mapping of quantitative trait loci (QTL) for vernalization requirement in Camelina sativa. An inter and intraspecific crossing scheme between related Camelina species, where one spring and two different sources of winter-type habit were used, resulted in the development of two segregating populations. Linkage maps generated with sequence-based markers identified three QTLs associated with vernalization requirement in C. sativa; two from the interspecific (chromosomes 13 and 20) and one from the intraspecific cross (chromosome 8). Notably, the three loci were mapped to different homologous regions of the hexaploid C. sativa genome. All three QTLs were found in proximity to Flowering Locus C (FLC), variants of which have been reported to affect the vernalization requirement in plants. Temporal transcriptome analysis for winter-type Camelina alyssum demonstrated reduction in expression of FLC on chromosomes 13 and 20 during cold treatment, which would trigger flowering, since FLC would be expected to suppress floral initiation. FLC on chromosome 8 also showed reduced expression in the C. sativa ssp. pilosa winter parent upon cold treatment, but was expressed at very high levels across all time points in the spring-type C. sativa. The chromosome 8 copy carried a deletion in the spring-type line, which could impact its functionality. Contrary to previous reports, all three FLC loci can contribute to controlling the vernalization response in C. sativa and provide opportunities for manipulating this requirement in the crop.


Assuntos
Arabidopsis , Locos de Características Quantitativas , Vernalização , Flores , Mapeamento Cromossômico , Arabidopsis/genética
2.
Plant Biotechnol J ; 21(3): 521-535, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36398722

RESUMO

Camelina neglecta is a diploid species from the genus Camelina, which includes the versatile oilseed Camelina sativa. These species are closely related to Arabidopsis thaliana and the economically important Brassica crop species, making this genus a useful platform to dissect traits of agronomic importance while providing a tool to study the evolution of polyploids. A highly contiguous chromosome-level genome sequence of C. neglecta with an N50 size of 29.1 Mb was generated utilizing Pacific Biosciences (PacBio, Menlo Park, CA) long-read sequencing followed by chromosome conformation phasing. Comparison of the genome with that of C. sativa shows remarkable coincidence with subgenome 1 of the hexaploid, with only one major chromosomal rearrangement separating the two. Synonymous substitution rate analysis of the predicted 34 061 genes suggested subgenome 1 of C. sativa directly descended from C. neglecta around 1.2 mya. Higher functional divergence of genes in the hexaploid as evidenced by the greater number of unique orthogroups, and differential composition of resistant gene analogs, might suggest an immediate adaptation strategy after genome merger. The absence of genome bias in gene fractionation among the subgenomes of C. sativa in comparison with C. neglecta, and the complete lack of fractionation of meiosis-specific genes attests to the neopolyploid status of C. sativa. The assembled genome will provide a tool to further study genome evolution processes in the Camelina genus and potentially allow for the identification and exploitation of novel variation for Camelina crop improvement.


Assuntos
Arabidopsis , Brassica , Brassicaceae , Neglecta , Diploide , Brassicaceae/genética , Arabidopsis/genética , Brassica/genética , Genoma de Planta
3.
Front Plant Sci ; 12: 787354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095961

RESUMO

Turnip mosaic virus (TuMV) induces disease in susceptible hosts, notably impacting cultivation of important crop species of the Brassica genus. Few effective plant viral disease management strategies exist with the majority of current approaches aiming to mitigate the virus indirectly through control of aphid vector species. Multiple sources of genetic resistance to TuMV have been identified previously, although the majority are strain-specific and have not been exploited commercially. Here, two Brassica juncea lines (TWBJ14 and TWBJ20) with resistance against important TuMV isolates (UK 1, vVIR24, CDN 1, and GBR 6) representing the most prevalent pathotypes of TuMV (1, 3, 4, and 4, respectively) and known to overcome other sources of resistance, have been identified and characterized. Genetic inheritance of both resistances was determined to be based on a recessive two-gene model. Using both single nucleotide polymorphism (SNP) array and genotyping by sequencing (GBS) methods, quantitative trait loci (QTL) analyses were performed using first backcross (BC1) genetic mapping populations segregating for TuMV resistance. Pairs of statistically significant TuMV resistance-associated QTLs with additive interactive effects were identified on chromosomes A03 and A06 for both TWBJ14 and TWBJ20 material. Complementation testing between these B. juncea lines indicated that one resistance-linked locus was shared. Following established resistance gene nomenclature for recessive TuMV resistance genes, these new resistance-associated loci have been termed retr04 (chromosome A06, TWBJ14, and TWBJ20), retr05 (A03, TWBJ14), and retr06 (A03, TWBJ20). Genotyping by sequencing data investigated in parallel to robust SNP array data was highly suboptimal, with informative data not established for key BC1 parental samples. This necessitated careful consideration and the development of new methods for processing compromised data. Using reductive screening of potential markers according to allelic variation and the recombination observed across BC1 samples genotyped, compromised GBS data was rendered functional with near-equivalent QTL outputs to the SNP array data. The reductive screening strategy employed here offers an alternative to methods relying upon imputation or artificial correction of genotypic data and may prove effective for similar biparental QTL mapping studies.

4.
Front Plant Sci ; 12: 780250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069637

RESUMO

Phenotyping is considered a significant bottleneck impeding fast and efficient crop improvement. Similar to many crops, Brassica napus, an internationally important oilseed crop, suffers from low genetic diversity, and will require exploitation of diverse genetic resources to develop locally adapted, high yielding and stress resistant cultivars. A pilot study was completed to assess the feasibility of using indoor high-throughput phenotyping (HTP), semi-automated image processing, and machine learning to capture the phenotypic diversity of agronomically important traits in a diverse B. napus breeding population, SKBnNAM, introduced here for the first time. The experiment comprised 50 spring-type B. napus lines, grown and phenotyped in six replicates under two treatment conditions (control and drought) over 38 days in a LemnaTec Scanalyzer 3D facility. Growth traits including plant height, width, projected leaf area, and estimated biovolume were extracted and derived through processing of RGB and NIR images. Anthesis was automatically and accurately scored (97% accuracy) and the number of flowers per plant and day was approximated alongside relevant canopy traits (width, angle). Further, supervised machine learning was used to predict the total number of raceme branches from flower attributes with 91% accuracy (linear regression and Huber regression algorithms) and to identify mild drought stress, a complex trait which typically has to be empirically scored (0.85 area under the receiver operating characteristic curve, random forest classifier algorithm). The study demonstrates the potential of HTP, image processing and computer vision for effective characterization of agronomic trait diversity in B. napus, although limitations of the platform did create significant variation that limited the utility of the data. However, the results underscore the value of machine learning for phenotyping studies, particularly for complex traits such as drought stress resistance.

5.
New Phytol ; 229(6): 3281-3293, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33020949

RESUMO

Ensuring faithful homologous recombination in allopolyploids is essential to maintain optimal fertility of the species. Variation in the ability to control aberrant pairing between homoeologous chromosomes in Brassica napus has been identified. The current study exploited the extremes of such variation to identify genetic factors that differentiate newly resynthesised B. napus, which is inherently unstable, and established B. napus, which has adapted to largely control homoeologous recombination. A segregating B. napus mapping population was analysed utilising both cytogenetic observations and high-throughput genotyping to quantify the levels of homoeologous recombination. Three quantitative trait loci (QTL) were identified that contributed to the control of homoeologous recombination in the important oilseed crop B. napus. One major QTL on BnaA9 contributed between 32 and 58% of the observed variation. This study is the first to assess homoeologous recombination and map associated QTLs resulting from deviations in normal pairing in allotetraploid B. napus. The identified QTL regions suggest candidate meiotic genes that could be manipulated in order to control this important trait and further allow the development of molecular markers to utilise this trait to exploit homoeologous recombination in a crop.


Assuntos
Brassica napus , Brassica napus/genética , Cromossomos de Plantas/genética , Genoma de Planta , Poliploidia , Locos de Características Quantitativas/genética
6.
Nat Plants ; 6(8): 929-941, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32782408

RESUMO

It is only recently, with the advent of long-read sequencing technologies, that we are beginning to uncover previously uncharted regions of complex and inherently recursive plant genomes. To comprehensively study and exploit the genome of the neglected oilseed Brassica nigra, we generated two high-quality nanopore de novo genome assemblies. The N50 contig lengths for the two assemblies were 17.1 Mb (12 contigs), one of the best among 324 sequenced plant genomes, and 0.29 Mb (424 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short-read assembly corroborated genome integrity and quantified sequence-related error rates (0.2%). The contiguity and coverage allowed unprecedented access to low-complexity regions of the genome. Pericentromeric regions and coincidence of hypomethylation enabled localization of active centromeres and identified centromere-associated ALE family retro-elements that appear to have proliferated through relatively recent nested transposition events (<1 Ma). Genomic distances calculated based on synteny relationships were used to define a post-triplication Brassica-specific ancestral genome, and to calculate the extensive rearrangements that define the evolutionary distance separating B. nigra from its diploid relatives.


Assuntos
Brassica/genética , Centrômero/genética , Genoma de Planta/genética , Mostardeira/genética , DNA de Plantas/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala
7.
Sci Rep ; 10(1): 12629, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724070

RESUMO

Ethiopian mustard (Brassica carinata A. Braun) is an emerging sustainable source of vegetable oil, in particular for the biofuel industry. The present study exploited genome assemblies of the Brassica diploids, Brassica nigra and Brassica oleracea, to discover over 10,000 genome-wide SNPs using genotype by sequencing of 620 B. carinata lines. The analyses revealed a SNP frequency of one every 91.7 kb, a heterozygosity level of 0.30, nucleotide diversity levels of 1.31 × 10-05, and the first five principal components captured only 13% molecular variation, indicating low levels of genetic diversity among the B. carinata collection. Genome bias was observed, with greater SNP density found on the B subgenome. The 620 lines clustered into two distinct sub-populations (SP1 and SP2) with the majority of accessions (88%) clustered in SP1 with those from Ethiopia, the presumed centre of origin. SP2 was distinguished by a collection of breeding lines, implicating targeted selection in creating population structure. Two selective sweep regions on B3 and B8 were detected, which harbour genes involved in fatty acid and aliphatic glucosinolate biosynthesis, respectively. The assessment of genetic diversity, population structure, and LD in the global B. carinata collection provides critical information to assist future crop improvement.


Assuntos
Produtos Agrícolas/genética , Indústrias , Desequilíbrio de Ligação/genética , Mostardeira/genética , Cromossomos de Plantas/genética , Variação Genética , Genética Populacional , Genoma de Planta , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética
8.
Cureus ; 10(6): e2811, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30116684

RESUMO

OBJECTIVE: To evaluate the impact of a simulation-based elective on medical student preparedness for obstetrics and gynecology (OB/GYN) residency. METHODS: A two-week, simulation-based elective course for post-clerkship medical students was developed, and 10 students participated at a single academic institution in 2016 and 2017. Using standardized patients and team-based training, students practiced procedural and surgical skills, as well as the diagnosis, management, and work-up of commonly seen problems. Close coaching with a low student-faculty ratio was employed for each session, allowing for individualized feedback in real time. Prior to and after completing the elective, student knowledge was evaluated using the Preparation for Residency Knowledge Assessment tool (PrepForRes). Written course evaluations were also completed by students at the end of the course. RESULTS: Mean scores on the PrepForRes exam increased from 63.6% to 75.3% (p=0.0136). Notably, the average post-course score improved to a passing level, and all but one student achieved a passing score on the post-course test. Course evaluations and student feedback showed high satisfaction rates with the course. CONCLUSIONS: This study demonstrates that a simulation-based elective course is an effective tool for helping medical students transition to OB/GYN residency. As medical schools work to facilitate the transition from undergraduate to graduate medical education, simulation can bridge gaps during this transition in order for students to meet entry-level residency requirements.

9.
G3 (Bethesda) ; 8(8): 2673-2683, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29907649

RESUMO

The heavy selection pressure due to intensive breeding of Brassica napus has created a narrow gene pool, limiting the ability to produce improved varieties through crosses between B. napus cultivars. One mechanism that has contributed to the adaptation of important agronomic traits in the allotetraploid B. napus has been chromosomal rearrangements resulting from homoeologous recombination between the constituent A and C diploid genomes. Determining the rate and distribution of such events in natural B. napus will assist efforts to understand and potentially manipulate this phenomenon. The Brassica high-density 60K SNP array, which provides genome-wide coverage for assessment of recombination events, was used to assay 254 individuals derived from 11 diverse cultivated spring type B. napus These analyses identified reciprocal allele gain and loss between the A and C genomes and allowed visualization of de novo homoeologous recombination events across the B. napus genome. The events ranged from loss/gain of 0.09 Mb to entire chromosomes, with almost 5% aneuploidy observed across all gametes. There was a bias toward sub-telomeric exchanges leading to genome homogenization at chromosome termini. The A genome replaced the C genome in 66% of events, and also featured more dominantly in gain of whole chromosomes. These analyses indicate de novo homoeologous recombination is a continuous source of variation in established Brassica napus and the rate of observed events appears to vary with genetic background. The Brassica 60K SNP array will be a useful tool in further study and manipulation of this phenomenon.


Assuntos
Brassica napus/genética , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Cromossomos de Plantas/genética , Frequência do Gene , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos
10.
Theor Appl Genet ; 130(4): 621-633, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28220206

RESUMO

The Brassica napus 60K Illumina Infinium™ SNP array has had huge international uptake in the rapeseed community due to the revolutionary speed of acquisition and ease of analysis of this high-throughput genotyping data, particularly when coupled with the newly available reference genome sequence. However, further utilization of this valuable resource can be optimized by better understanding the promises and pitfalls of SNP arrays. We outline how best to analyze Brassica SNP marker array data for diverse applications, including linkage and association mapping, genetic diversity and genomic introgression studies. We present data on which SNPs are locus-specific in winter, semi-winter and spring B. napus germplasm pools, rather than amplifying both an A-genome and a C-genome locus or multiple loci. Common issues that arise when analyzing array data will be discussed, particularly those unique to SNP markers and how to deal with these for practical applications in Brassica breeding applications.


Assuntos
Brassica napus/genética , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Alelos , Mapeamento Cromossômico , Evolução Molecular , Rearranjo Gênico , Ligação Genética , Marcadores Genéticos , Genética Populacional , Genoma de Planta , Técnicas de Genotipagem , Melhoramento Vegetal
11.
Theor Appl Genet ; 129(10): 1887-99, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27364915

RESUMO

KEY MESSAGE: The Brassica napus Illumina array provides genome-wide markers linked to the available genome sequence, a significant tool for genetic analyses of the allotetraploid B. napus and its progenitor diploid genomes. A high-density single nucleotide polymorphism (SNP) Illumina Infinium array, containing 52,157 markers, was developed for the allotetraploid Brassica napus. A stringent selection process employing the short probe sequence for each SNP assay was used to limit the majority of the selected markers to those represented a minimum number of times across the highly replicated genome. As a result approximately 60 % of the SNP assays display genome-specificity, resolving as three clearly separated clusters (AA, AB, and BB) when tested with a diverse range of B. napus material. This genome specificity was supported by the analysis of the diploid ancestors of B. napus, whereby 26,504 and 29,720 markers were scorable in B. oleracea and B. rapa, respectively. Forty-four percent of the assayed loci on the array were genetically mapped in a single doubled-haploid B. napus population allowing alignment of their physical and genetic coordinates. Although strong conservation of the two positions was shown, at least 3 % of the loci were genetically mapped to a homoeologous position compared to their presumed physical position in the respective genome, underlying the importance of genetic corroboration of locus identity. In addition, the alignments identified multiple rearrangements between the diploid and tetraploid Brassica genomes. Although mostly attributed to genome assembly errors, some are likely evidence of rearrangements that occurred since the hybridisation of the progenitor genomes in the B. napus nucleus. Based on estimates for linkage disequilibrium decay, the array is a valuable tool for genetic fine mapping and genome-wide association studies in B. napus and its progenitor genomes.


Assuntos
Brassica napus/genética , Mapeamento Cromossômico , Genoma de Planta , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , DNA de Plantas/genética , Diploide , Marcadores Genéticos , Análise de Sequência de DNA , Tetraploidia
12.
Mol Breed ; 35: 35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25620879

RESUMO

Camelina sativa, a largely relict crop, has recently returned to interest due to its potential as an industrial oilseed. Molecular markers are key tools that will allow C. sativa to benefit from modern breeding approaches. Two complementary methodologies, capture of 3' cDNA tags and genomic reduced-representation libraries, both of which exploited second generation sequencing platforms, were used to develop a low density (768) Illumina GoldenGate single nucleotide polymorphism (SNP) array. The array allowed 533 SNP loci to be genetically mapped in a recombinant inbred population of C. sativa. Alignment of the SNP loci to the C. sativa genome identified the underlying sequenced regions that would delimit potential candidate genes in any mapping project. In addition, the SNP array was used to assess genetic variation among a collection of 175 accessions of C. sativa, identifying two sub-populations, yet low overall gene diversity. The SNP loci will provide useful tools for future crop improvement of C. sativa.

13.
Genome ; 57(8): 419-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25275757

RESUMO

Turnip mosaic virus (TuMV) is the major virus infecting crops of the genus Brassica worldwide. A dominant resistance gene, TuRB01b, that confers immunity to the virus isolate UK 1 (a representative pathotype 1 isolate of TuMV) on Brassica rapa was identified in the Chinese cabbage cultivar Tropical Delight. The TuRB01b locus was mapped to a 2.9-cM interval on B. rapa chromosome 6 (A6) that was flanked by RFLP markers pN101e1 and pW137e1. This mapping used a first backcross (B(1)) population segregating for the resistance gene at TuRB01b and sets of RFLP markers employed in previous mapping experiments in Brassica. Virus-plant interaction phenotypes were assayed in inbred progeny derived from B(1) individuals to allow different virus isolates to be tested. Comparative mapping confirmed that A6 of B. rapa was equivalent to chromosome 6 of Brassica napus (A6) and that the map position of TuRB01b in B. rapa could be identical to that of TuRB01 in B. napus. Detailed evaluation of plant-virus interactions showed that TuRB01 and TuRB01b had indistinguishable specificities to a range of TuMV isolates. The possibility that TuRB01 and TuRB01b represent similar or identical alleles at the same A genome resistance locus suggests that B. napus acquired TuRB01 from the B. rapa gene pool.


Assuntos
Brassica napus/genética , Brassica rapa/genética , Brassica rapa/imunologia , Brassica rapa/virologia , Imunidade Inata/genética , Tymovirus/genética , Brassica napus/virologia , Cruzamento/métodos , Mapeamento Cromossômico , Ligação Genética , Polimorfismo de Fragmento de Restrição , Especificidade da Espécie
14.
Nat Commun ; 5: 3706, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24759634

RESUMO

Camelina sativa is an oilseed with desirable agronomic and oil-quality attributes for a viable industrial oil platform crop. Here we generate the first chromosome-scale high-quality reference genome sequence for C. sativa and annotated 89,418 protein-coding genes, representing a whole-genome triplication event relative to the crucifer model Arabidopsis thaliana. C. sativa represents the first crop species to be sequenced from lineage I of the Brassicaceae. The well-preserved hexaploid genome structure of C. sativa surprisingly mirrors those of economically important amphidiploid Brassica crop species from lineage II as well as wheat and cotton. The three genomes of C. sativa show no evidence of fractionation bias and limited expression-level bias, both characteristics commonly associated with polyploid evolution. The highly undifferentiated polyploid genome of C. sativa presents significant consequences for breeding and genetic manipulation of this industrial oil crop.


Assuntos
Biocombustíveis , Brassicaceae/genética , Genoma de Planta , Poliploidia , Cariotipagem
15.
Genome ; 53(11): 929-38, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21076508

RESUMO

The architecture of the Brassica napus genome is marked by its evolutionary origins. The genome of B. napus was formed from the hybridization of two closely related diploid Brassica species, both of which evolved from an hexaploid ancestor. The extensive whole genome duplication events in its near and distant past result in the allotetraploid genome of B. napus maintaining multiple copies of most genes, which predicts a highly complex and redundant transcriptome that can confound any expression analyses. A stringent assembly of 142,399 B. napus expressed sequence tags allowed the development of a well-differentiated set of reference transcripts, which were used as a foundation to assess the efficacy of available tools for identifying and distinguishing transcripts in B. napus; including microarray hybridization and 3' anchored sequence tag capture. Microarray platforms cannot distinguish transcripts derived from the two progenitors or close homologues, although observed differential expression appeared to be biased towards unique transcripts. The use of 3' capture enhanced the ability to unambiguously identify homologues within the B. napus transcriptome but was limited by tag length. The ability to comprehensively catalogue gene expression in polyploid species could be transformed by the application of cost-efficient next generation sequencing technologies that will capture millions of long sequence tags.


Assuntos
Brassica napus/genética , Perfilação da Expressão Gênica/métodos , Tetraploidia , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos
16.
J Clin Virol ; 44(2): 164-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19129009

RESUMO

BACKGROUND: Merkel cell polyomavirus (MCV or MCPyV) is a recently discovered human polyomavirus that is implicated in the pathogenesis of Merkel cell carcinoma (MCC). Although the transmission route for MCV is not yet known, other polyomaviruses, such as BKV, cause non-malignant pathology in the urinary tract. Like MCC, prostate cancer predominantly affects the elderly. Furthermore, prostate cancers and premalignant precursors exhibit chronic inflammation, which suggests a possible infectious involvement. We therefore examined whether MCV might participate in the pathogenesis of prostate cancer. OBJECTIVE: To determine the presence of MCV RNA in prostate cancer and surrounding stroma or normal prostate tissue. STUDY DESIGN: RNA was extracted from 28 patient-matched cancerous and 28 benign prostate epithelial samples, and six additional cancer-adjacent stromal samples. All tissues were laser-capture micro-dissected. DNA and RNA from a sequence-verified MCV-containing MCC tumor served as a positive control. Quantitative reverse-transcription PCR was used to assess the presence or absence of MCV T antigen transcript. RESULTS: No MCV T antigen was detected in prostate carcinomas, patient-matched benign samples, or tumor-adjacent stroma, with appropriate sensitivity of the assay demonstrated by an MCC tumor. CONCLUSIONS: MCV infection appears unlikely to be a significant factor in prostate carcinogenesis and there is no evidence of the prostate serving as a reservoir for MCV.


Assuntos
Polyomavirus/isolamento & purificação , Próstata/virologia , Neoplasias da Próstata/virologia , Antígenos Transformantes de Poliomavirus/genética , Humanos , Masculino , Infecções por Polyomavirus/virologia , RNA Mensageiro/genética , RNA Viral/genética , Infecções Tumorais por Vírus/virologia
17.
J Gen Virol ; 88(Pt 11): 3177-3186, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17947545

RESUMO

The Brassica rapa line RLR22 was resistant to eight diverse turnip mosaic virus (TuMV) isolates. A B. rapa genetic map based on 213 marker loci segregating in 120 first back-cross (B(1)) individuals was established and aligned with the B. rapa genome reference map using some of the RFLP probes. B(1) individuals were self-pollinated to produce B(1)S(1) families. The existence of two loci controlling resistance to TuMV isolate CDN 1 was established from contrasting patterns of segregation for resistance and susceptibility in the B(1)S(1) families. The first gene, recessive TuMV resistance 01 (retr01), had a recessive allele for resistance, was located on the upper portion of chromosome R4 and was epistatic to the second gene. The second gene, Conditional TuMV resistance 01 (ConTR01), possessed a dominant allele for resistance and was located on the upper portion of chromosome R8. These genes also controlled resistance to TuMV isolate CZE 1 and might be sufficient to explain the broad-spectrum resistance of RLR22. The dominant resistance gene, ConTR01, was coincident with one of the three eukaryotic initiation factor 4E (eIF4E) loci of B. rapa and possibly one of the loci of eIF(iso)4E. The recessive resistance gene retr01 was apparently coincident with one of the three loci of eIF(iso)4E in the A genome of Brassica napus and therefore, by inference, in the B. rapa genome. This suggested a mode of action for the resistance that is based on denying the viral RNA access to the translation initiation complex of the plant host. The gene retr01 is the first reported example of a recessive resistance gene mapped in a Brassica species.


Assuntos
Brassica rapa/virologia , Imunidade Inata/genética , Doenças das Plantas/virologia , Potyvirus/crescimento & desenvolvimento , Mapeamento Cromossômico , Cromossomos de Plantas , Fator de Iniciação 4E em Eucariotos/genética , Genes Dominantes , Genes de Plantas , Genes Recessivos , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA