RESUMO
Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.
RESUMO
Large language models (LLMs) have made a significant impact on the fields of general artificial intelligence. General purpose LLMs exhibit strong logic and reasoning skills and general world knowledge but can sometimes generate misleading results when prompted on specific subject areas. LLMs trained with domain-specific knowledge can reduce the generation of misleading information (i.e. hallucinations) and enhance the precision of LLMs in specialized contexts. Training new LLMs on specific corpora however can be resource intensive. Here we explored the use of a retrieval-augmented generation (RAG) model which we tested on literature specific to a biomedical research area. OpenAI's GPT-3.5, GPT-4, Microsoft's Prometheus, and a custom RAG model were used to answer 19 questions pertaining to diffuse large B-cell lymphoma (DLBCL) disease biology and treatment. Eight independent reviewers assessed LLM responses based on accuracy, relevance, and readability, rating responses on a 3-point scale for each category. These scores were then used to compare LLM performance. The performance of the LLMs varied across scoring categories. On accuracy and relevance, the RAG model outperformed other models with higher scores on average and the most top scores across questions. GPT-4 was more comparable to the RAG model on relevance versus accuracy. By the same measures, GPT-4 and GPT-3.5 had the highest scores for readability of answers when compared to the other LLMs. GPT-4 and 3.5 also had more answers with hallucinations than the other LLMs, due to non-existent references and inaccurate responses to clinical questions. Our findings suggest that an oncology research-focused RAG model may outperform general-purpose LLMs in accuracy and relevance when answering subject-related questions. This framework can be tailored to Q&A in other subject areas. Further research will help understand the impact of LLM architectures, RAG methodologies, and prompting techniques in answering questions across different subject areas.
RESUMO
Background: Enhanced B-cell presentation of donor alloantigen relative to presentation of HLA-mismatched reference alloantigen is associated with acute cellular rejection (ACR), when expressed as a ratio called the antigen presenting index (API) in an exploratory cohort of liver and intestine transplant (LT and IT) recipients. Methods: To test clinical performance, we measured the API using the previously described 6-h assay in 84 LT and 54 IT recipients with median age 3.3 y (0.05-23.96). Recipients experiencing ACR within 60 d after testing were termed rejectors. Results: We first confirmed that B-cell uptake and presentation of alloantigen induced and thus reflected the alloresponse of T-helper cells, which were incubated without and with cytochalasin and primaquine to inhibit antigen uptake and presentation, respectively. Transplant recipients included 76 males and 62 females. Rejectors were tested at median 3.6 d before diagnosis. The API was higher among rejectors compared with nonrejectors (2.2â ±â 0.2 versus 0.6â ±â 0.04, P value = 1.7E-09). In logistic regression and receiver-operating-characteristic analysis, API ≥1.1 achieved sensitivity, specificity, and positive and negative predictive values for predicting ACR in 99 training set samples. Corresponding metrics ranged from 80% to 88% in 32 independent posttransplant samples, and 73% to 100% in 20 independent pretransplant samples. In time-to-event analysis, API ≥1.1 predicted higher incidence of late donor-specific anti-HLA antibodies after API measurements in LT recipients (P = 0.011) and graft loss in IT recipients (P = 0.008), compared with recipients with API <1.1, respectively. Conclusions: Enhanced donor antigen presentation by circulating B cells predicts rejection after liver or intestine transplantation as well as higher incidence of DSA and graft loss late after transplantation.
RESUMO
BACKGROUND & AIMS: Biliary atresia (BA) is poorly understood and leads to liver transplantation (LT), with the requirement for and associated risks of lifelong immunosuppression, in most children. We performed a genome-wide association study (GWAS) to determine the genetic basis of BA. METHODS: We performed a GWAS in 811 European BA cases treated with LT in US, Canadian and UK centers, and 4,654 genetically matched controls. Whole-genome sequencing of 100 cases evaluated synthetic association with rare variants. Functional studies included whole liver transcriptome analysis of 64 BA cases and perturbations in experimental models. RESULTS: A GWAS of common single nucleotide polymorphisms (SNPs), i.e. allele frequencies >1%, identified intronic SNPs rs6446628 in AFAP1 with genome-wide significance (p = 3.93E-8) and rs34599046 in TUSC3 at sub-threshold genome-wide significance (p = 1.34E-7), both supported by credible peaks of neighboring SNPs. Like other previously reported BA-associated genes, AFAP1 and TUSC3 are ciliogenesis and planar polarity effectors (CPLANE). In gene-set-based GWAS, BA was associated with 6,005 SNPs in 102 CPLANE genes (p = 5.84E-15). Compared with non-CPLANE genes, more CPLANE genes harbored rare variants (allele frequency <1%) that were assigned Human Phenotype Ontology terms related to hepatobiliary anomalies by predictive algorithms, 87% vs. 40%, p <0.0001. Rare variants were present in multiple genes distinct from those with BA-associated common variants in most BA cases. AFAP1 and TUSC3 knockdown blocked ciliogenesis in mouse tracheal cells. Inhibition of ciliogenesis caused biliary dysgenesis in zebrafish. AFAP1 and TUSC3 were expressed in fetal liver organoids, as well as fetal and BA livers, but not in normal or disease-control livers. Integrative analysis of BA-associated variants and liver transcripts revealed abnormal vasculogenesis and epithelial tube formation, explaining portal vein anomalies that co-exist with BA. CONCLUSIONS: BA is associated with polygenic susceptibility in CPLANE genes. Rare variants contribute to polygenic risk in vulnerable pathways via unique genes. IMPACT AND IMPLICATIONS: Liver transplantation is needed to cure most children born with biliary atresia, a poorly understood rare disease. Transplant immunosuppression increases the likelihood of life-threatening infections and cancers. To improve care by preventing this disease and its progression to transplantation, we examined its genetic basis. We find that this disease is associated with both common and rare mutations in highly specialized genes which maintain normal communication and movement of cells, and their organization into bile ducts and blood vessels during early development of the human embryo. Because defects in these genes also cause other birth defects, our findings could lead to preventive strategies to lower the incidence of biliary atresia and potentially other birth defects.
Assuntos
Atresia Biliar , Criança , Animais , Camundongos , Humanos , Atresia Biliar/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Peixe-Zebra/genética , CanadáRESUMO
Assessment of cellular immunity to the SARS-CoV-2 coronavirus is of great interest in chronically immunosuppressed transplant recipients (Tr), who are predisposed to infections and vaccination failures. We evaluated CD154-expressing T-cells induced by spike (S) antigenic peptides in 204 subjects-103 COVID-19 patients and 101 healthy unexposed subjects. S-reactive CD154+T-cell frequencies were a) higher in 42 healthy unexposed Tr who were sampled pre-pandemic, compared with healthy NT (p=0.02), b) lower in Tr COVID-19 patients compared with healthy Tr (p<0.0001) and were accompanied by lower S-reactive B-cell frequencies (p<0.05), c) lower in Tr with severe COVID-19 (p<0.0001), or COVID-19 requiring hospitalization (p<0.05), compared with healthy Tr. Among Tr with COVID-19, cytomegalovirus co-infection occurred in 34%; further, incidence of anti-receptor-binding-domain IgG (p=0.011) was lower compared with NT COVID-19 patients. Healthy unexposed Tr exhibit pre-existing T-cell immunity to SARS-CoV-2. COVID-19 impairs anti-S T-cell and antibody and predisposes to CMV co-infection in transplant recipients.
RESUMO
Selecting the right immunosuppressant to ensure rejection-free outcomes poses unique challenges in pediatric liver transplant (LT) recipients. A molecular predictor can comprehensively address these challenges. Currently, there are no well-validated blood-based biomarkers for pediatric LT recipients before or after LT. Here, we discover and validate separate pre- and post-LT transcriptomic signatures of rejection. Using an integrative machine learning approach, we combine transcriptomics data with the reference high-quality human protein interactome to identify network module signatures, which underlie rejection. Unlike gene signatures, our approach is inherently multivariate and more robust to replication and captures the structure of the underlying network, encapsulating additive effects. We also identify, in an individual-specific manner, signatures that can be targeted by current anti-rejection drugs and other drugs that can be repurposed. Our approach can enable personalized adjustment of drug regimens for the dominant targetable pathways before and after LT in children.
Assuntos
Transplante de Fígado , Criança , Humanos , Imunossupressores/uso terapêuticoRESUMO
Existing approaches for cancer diagnosis are inefficient in the use of diagnostic tissue, and decision-making is often sequential, typically resulting in delayed treatment initiation. Future diagnostic testing needs to be faster and optimize increasingly complex treatment decisions. We envision a future where comprehensive testing is routine. Our approach, termed the "combiome," combines holistic information from the tumor, and the patient's immune system. The combiome model proposed here advocates synchronized up-front testing with a panel of sensitive assays, revealing a more complete understanding of the patient phenotype and improved targeting and sequencing of treatments. Development and eventual adoption of the combiome model for diagnostic testing may provide better outcomes for all cancer patients, but will require significant changes in workflows, technology, regulations, and administration. In this review, we discuss the current and future testing landscape, targeting of personalized treatments, and technological and regulatory advances necessary to achieve the combiome.
Assuntos
Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Modelos Teóricos , Humanos , Imunoterapia , Microbiota , Proteogenômica , Resultado do TratamentoRESUMO
To improve the power of mediation in high-throughput studies, here we introduce High-throughput mediation analysis (Hitman), which accounts for direction of mediation and applies empirical Bayesian linear modeling. We apply Hitman in a retrospective, exploratory analysis of the SLIMM-T2D clinical trial in which participants with type 2 diabetes were randomized to Roux-en-Y gastric bypass (RYGB) or nonsurgical diabetes/weight management, and fasting plasma proteome and metabolome were assayed up to 3 years. RYGB caused greater improvement in HbA1c, which was mediated by growth hormone receptor (GHR). GHR's mediation is more significant than clinical mediators, including BMI. GHR decreases at 3 months postoperatively alongside increased insulin-like growth factor binding proteins IGFBP1/BP2; plasma GH increased at 1 year. Experimental validation indicates (1) hepatic GHR expression decreases in post-bariatric rats; (2) GHR knockdown in primary hepatocytes decreases gluconeogenic gene expression and glucose production. Thus, RYGB may induce resistance to diabetogenic effects of GH signaling.Trial Registration: Clinicaltrials.gov NCT01073020.
Assuntos
Diabetes Mellitus Tipo 2/sangue , Derivação Gástrica , Fígado/metabolismo , Metaboloma , Obesidade/sangue , Proteoma , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Índice de Massa Corporal , Proteínas de Transporte/sangue , Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/cirurgia , Dipeptidases/sangue , Dipeptidases/genética , Jejum/fisiologia , Regulação da Expressão Gênica , Hemoglobinas Glicadas/genética , Hemoglobinas Glicadas/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Hormônio do Crescimento Humano/sangue , Hormônio do Crescimento Humano/genética , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fígado/patologia , Obesidade/genética , Obesidade/patologia , Obesidade/cirurgia , Cultura Primária de Células , Ratos , Estudos RetrospectivosRESUMO
Assessment of T-cell immunity to the COVID-19 coronavirus requires reliable assays and is of great interest, given the uncertain longevity of the antibody response. Some recent reports have used immunodominant spike (S) antigenic peptides and anti-CD28 co-stimulation in varying combinations to assess T-cell immunity to SARS-CoV-2. These assays may cause T-cell hyperstimulation and could overestimate antiviral immunity in chronically immunosuppressed transplant recipients, who are predisposed to infections and vaccination failures. Here, we evaluate CD154-expressing T-cells induced by unselected S antigenic peptides in 204 subjects-103 COVID-19 patients and 101 healthy unexposed subjects. Subjects included 72 transplanted and 130 non-transplanted subjects. S-reactive CD154+T-cells co-express and can thus substitute for IFNγ (n=3). Assay reproducibility in a variety of conditions was acceptable with coefficient of variation of 2-10.6%. S-reactive CD154+T-cell frequencies were a) higher in 42 healthy unexposed transplant recipients who were sampled pre-pandemic, compared with 59 healthy non-transplanted subjects (p=0.02), b) lower in Tr COVID-19 patients compared with healthy transplant patients (p<0.0001), c) lower in Tr patients with severe COVID-19 (p<0.0001), or COVID-19 requiring hospitalization (p<0.05), compared with healthy Tr recipients. S-reactive T-cells were not significantly different between the various COVID-19 disease categories in NT recipients. Among transplant recipients with COVID-19, cytomegalovirus co-infection occurred in 34%; further, CMV-specific T-cells (p<0.001) and incidence of anti-receptor-binding-domain IgG (p=0.011) were lower compared with non-transplanted COVID-19 patients. Healthy unexposed transplant recipients exhibit pre-existing T-cell immunity to SARS-CoV-2. COVID-19 infection leads to impaired T-cell and antibody responses to SARS-CoV-2 and increased risk of CMV co-infection in transplant recipients.
RESUMO
PURPOSE: Tumor mutational burden (TMB) has been shown to be predictive of survival benefit in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors. Measuring TMB in the blood (bTMB) using circulating cell-free tumor DNA (ctDNA) offers practical advantages compared with TMB measurement in tissue (tTMB); however, there is a need for validated assays and identification of optimal cutoffs. We describe the analytic validation of a new bTMB algorithm and its clinical utility using data from the phase III MYSTIC trial. PATIENTS AND METHODS: The dataset used for the clinical validation was from MYSTIC, which evaluated first-line durvalumab (anti-PD-L1 antibody) ± tremelimumab (anticytotoxic T-lymphocyte-associated antigen-4 antibody) or chemotherapy for metastatic NSCLC. bTMB and tTMB were evaluated using the GuardantOMNI and FoundationOne CDx assays, respectively. A Cox proportional hazards model and minimal P value cross-validation approach were used to identify the optimal bTMB cutoff. RESULTS: In MYSTIC, somatic mutations could be detected in ctDNA extracted from plasma samples in a majority of patients, allowing subsequent calculation of bTMB. The success rate for obtaining valid TMB scores was higher for bTMB (809/1,001; 81%) than for tTMB (460/735; 63%). Minimal P value cross-validation analysis confirmed the selection of bTMB ≥20 mutations per megabase (mut/Mb) as the optimal cutoff for clinical benefit with durvalumab + tremelimumab. CONCLUSIONS: Our study demonstrates the feasibility, accuracy, and reproducibility of the GuardantOMNI ctDNA platform for quantifying bTMB from plasma samples. Using the new bTMB algorithm and an optimal bTMB cutoff of ≥20 mut/Mb, high bTMB was predictive of clinical benefit with durvalumab + tremelimumab versus chemotherapy.
Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/sangue , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/patologia , Mutação , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Casos e Controles , DNA Tumoral Circulante/genética , Ensaios Clínicos Fase III como Assunto , Seguimentos , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico , Estudos RetrospectivosRESUMO
Mutations that drive oncogenesis in cancer can generate neoantigens that may be recognized by the immune system. Identification of these neoantigens remains challenging due to the complexity of the MHC antigen and T-cell receptor interaction. Here, we describe the development of a systematic approach to efficiently identify and validate immunogenic neoantigens. Whole-exome sequencing of tissue from a patient with melanoma was used to identify nonsynonymous mutations, followed by MHC binding prediction and identification of tumor clonal architecture. The top 18 putative class I neoantigens were selected for immunogenicity testing via a novel in vitro pipeline in HLA-A201 healthy donor blood. Naïve CD8 T cells from donors were stimulated with allogeneic dendritic cells pulsed with peptide pools and then with individual peptides. The presence of antigen-specific T cells was determined via functional assays. We identified one putative neoantigen that expanded T cells specific to the mutant form of the peptide and validated this pipeline in a subset of patients with bladder tumors treated with durvalumab (n = 5). Within this cohort, the top predicted neoantigens from all patients were immunogenic in vitro. Finally, we looked at overall survival in the whole durvalumab-treated bladder cohort (N = 37) by stratifying patients by tertile measure of tumor mutation burden (TMB) or neoantigen load. Patients with higher neoantigen and TMB load tended to show better overall survival. IMPLICATIONS: This pipeline can enable accurate and rapid identification of personalized neoantigens that may help to identify patients who will survive longer on durvalumab.
Assuntos
Antígenos de Neoplasias/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologiaRESUMO
DNA methylation biomarkers are increasingly utilized for the detection, prognosis and monitoring of cancer. Here we use publicly-available whole genome bisulfite sequencing data to identify differentially methylated regions (cDMRs) in diverse tumor types and further define a set of genomic target regions that have optimal characteristics for Methylation Sensitive Restriction Enzyme-PCR (MSRE-PCR)-based detection: conserved hypermethylation in tumors, abundant MSRE sites and low methylation levels in normal tissues. The identified MSRE-PCR target regions (n = 1,294) were primarily encompassed within CpG islands (97%) and promoters (81%) with 39% of the target regions overlapping the transcription start site. Gene set enrichment analysis of the target regions identified significant enrichment of genes involved in neuronal development. A multiplexed MSRE-PCR assay was developed interrogating 47 target regions and was tested on a set of genomic DNAs (n = 100) from diverse tumor and normal tissue types including colon, breast, lung, stomach and blood. A logistic regression model containing seven target region amplicons distinguished between tumor and normal tissue in the training (n = 50) with a ROC AUC of 0.97 (95% CI [0.92, 1]) and independent test set (n = 50) with an AUC of 0.93 (95% CI [0.84, 1]). These findings show that genomic regions with conserved hypermethylation across diverse tumor types, abundant MSRE sites and low methylation levels in normal tissues provide target regions for the detection of tumor DNA via MSRE-PCR. The selective amplification of tumor-derived DNA via MSRE-PCR may have utility in the development of non-invasive cancer detection and surveillance strategies.
RESUMO
BACKGROUND/AIMS: Infectious and genetic factors are invoked, respectively in isolated biliary atresia (BA), or syndromic BA, with major extrahepatic anomalies. However, isolated BA is also associated with minor extrahepatic gut and cardiovascular anomalies and multiple susceptibility genes, suggesting common origins. METHODS: We investigated novel susceptibility genes with genome-wide association, targeted sequencing and tissue staining in BA requiring liver transplantation, independent of BA subtype. Candidate gene effects on morphogenesis, developmental pathways, and ciliogenesis, which regulates left-right patterning were investigated with zebrafish knockdown and mouse knockout models, mouse airway cell cultures, and liver transcriptome analysis. RESULTS: Single nucleotide polymorphisms in Mannosidase-1-α-2 (MAN1A2) were significantly associated with BA and with other polymorphisms known to affect MAN1A2 expression but were not differentially enriched in either BA subtype. In zebrafish embryos, man1a2 knockdown caused poor biliary network formation, ciliary dysgenesis in Kupffer's vesicle, cardiac and liver heterotaxy, and dysregulated egfra and other developmental genes. Suboptimal man1a2 knockdown synergized with suboptimal EGFR signaling or suboptimal knockdown of the EGFR pathway gene, adenosine-ribosylation-factor-6, which had minimal effects individually, to reproduce biliary defects but not heterotaxy. In cultured mouse airway epithelium, Man1a2 knockdown arrested ciliary development and motility. Man1a2 -/- mice, which experience respiratory failure, also demonstrated portal and bile ductular inflammation. Human BA liver and Man1a2 -/- liver exhibited reduced Man1a2 expression and dysregulated ciliary genes, known to cause multisystem human laterality defects. CONCLUSION: BA requiring transplantation associates with sequence variants in MAN1A2. man1a2 regulates laterality, in addition to hepatobiliary morphogenesis, by regulating ciliogenesis in zebrafish and mice, providing a novel developmental basis for multisystem defects in BA.
RESUMO
The utility of circulating tumor DNA (ctDNA) as a biomarker in patients with advanced cancers receiving immunotherapy is uncertain. We therefore analyzed pretreatment (n = 978) and on-treatment (n = 171) ctDNA samples across 16 advanced-stage tumor types from three phase I/II trials of durvalumab (± the anti-CTLA4 therapy tremelimumab). Higher pretreatment variant allele frequencies (VAF) were associated with poorer overall survival (OS) and other known prognostic factors, but not objective response, suggesting a prognostic role for patient outcomes. On-treatment reductions in VAF and lower on-treatment VAF were independently associated with longer progression-free survival and OS and increased objective response rate, but not prognostic variables, suggesting that on-treatment ctDNA dynamics are predictive of benefit from immune checkpoint blockade. Accordingly, we propose a concept of "molecular response" using ctDNA, incorporating both pretreatment and on-treatment VAF, that predicted long-term survival similarly to initial radiologic response while also permitting early differentiation of responders among patients with initially radiologically stable disease. SIGNIFICANCE: In a pan-cancer analysis of immune checkpoint blockade, pretreatment ctDNA levels appeared prognostic and on-treatment dynamics predictive. A "molecular response" metric identified long-term responders and adjudicated benefit among patients with initially radiologically stable disease. Changes in ctDNA may be more dynamic than radiographic changes and could complement existing trial endpoints.This article is highlighted in the In This Issue feature, p. 1775.
Assuntos
DNA Tumoral Circulante/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/genética , Neoplasias/mortalidade , Prognóstico , Análise de SobrevidaRESUMO
Importance: Checkpoint inhibitors targeting programmed cell death 1 or its ligand (PD-L1) as monotherapies or in combination with anti-cytotoxic T-lymphocyte-associated antigen 4 have shown clinical activity in patients with metastatic non-small cell lung cancer. Objective: To compare durvalumab, with or without tremelimumab, with chemotherapy as a first-line treatment for patients with metastatic non-small cell lung cancer. Design, Setting, and Participants: This open-label, phase 3 randomized clinical trial (MYSTIC) was conducted at 203 cancer treatment centers in 17 countries. Patients with treatment-naive, metastatic non-small cell lung cancer who had no sensitizing EGFR or ALK genetic alterations were randomized to receive treatment with durvalumab, durvalumab plus tremelimumab, or chemotherapy. Data were collected from July 21, 2015, to October 30, 2018. Interventions: Patients were randomized (1:1:1) to receive treatment with durvalumab (20 mg/kg every 4 weeks), durvalumab (20 mg/kg every 4 weeks) plus tremelimumab (1 mg/kg every 4 weeks, up to 4 doses), or platinum-based doublet chemotherapy. Main Outcomes and Measures: The primary end points, assessed in patients with ≥25% of tumor cells expressing PD-L1, were overall survival (OS) for durvalumab vs chemotherapy, and OS and progression-free survival (PFS) for durvalumab plus tremelimumab vs chemotherapy. Analysis of blood tumor mutational burden (bTMB) was exploratory. Results: Between July 21, 2015, and June 8, 2016, 1118 patients were randomized. Baseline demographic and disease characteristics were balanced between treatment groups. Among 488 patients with ≥25% of tumor cells expressing PD-L1, median OS was 16.3 months (95% CI, 12.2-20.8) with durvalumab vs 12.9 months (95% CI, 10.5-15.0) with chemotherapy (hazard ratio [HR], 0.76; 97.54% CI, 0.56-1.02; P = .04 [nonsignificant]). Median OS was 11.9 months (95% CI, 9.0-17.7) with durvalumab plus tremelimumab (HR vs chemotherapy, 0.85; 98.77% CI, 0.61-1.17; P = .20). Median PFS was 3.9 months (95% CI, 2.8-5.0) with durvalumab plus tremelimumab vs 5.4 months (95% CI, 4.6-5.8) with chemotherapy (HR, 1.05; 99.5% CI, 0.72-1.53; P = .71). Among 809 patients with evaluable bTMB, those with a bTMB ≥20 mutations per megabase showed improved OS for durvalumab plus tremelimumab vs chemotherapy (median OS, 21.9 months [95% CI, 11.4-32.8] vs 10.0 months [95% CI, 8.1-11.7]; HR, 0.49; 95% CI, 0.32-0.74). Treatment-related adverse events of grade 3 or higher occurred in 55 (14.9%) of 369 patients who received treatment with durvalumab, 85 (22.9%) of 371 patients who received treatment with durvalumab plus tremelimumab, and 119 (33.8%) of 352 patients who received treatment with chemotherapy. These adverse events led to death in 2 (0.5%), 6 (1.6%), and 3 (0.9%) patients, respectively. Conclusions and Relevance: The phase 3 MYSTIC study did not meet its primary end points of improved OS with durvalumab vs chemotherapy or improved OS or PFS with durvalumab plus tremelimumab vs chemotherapy in patients with ≥25% of tumor cells expressing PD-L1. Exploratory analyses identified a bTMB threshold of ≥20 mutations per megabase for optimal OS benefit with durvalumab plus tremelimumab. Trial Registration: ClinicalT rials.gov Identifier: NCT02453282.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase NeoplásicaRESUMO
Cell-mediated immunity to CMV, if known, could improve antiviral drug therapy in at-risk children and young adults with LT and IT. Host immunity has been measured with CMV-specific T cells, which express IFNγ, but not those which express CD154, a possible substitute for IFNγ. CMV-specific CD154+ T cells and their subsets were measured with flow cytometry after stimulating PBL from recipient blood samples with an overlapping peptide mix of CMV-pp65 antigen for up to 6 hours. CMV-specific CD154+ T cells co-expressed IFNγ in PBL from three healthy adults and averaged 3.8% (95% CI 3.2%-4.4%) in 40 healthy adults. CMV-specific T cells were significantly lower in 19 CMV DNAemic LT or IT recipients, compared with 126 non-DNAemic recipients, 1.3% (95% CI 0.8-1.7) vs 4.1 (95% CI 3.6-4.6, P < .001). All T-cell subsets demonstrated similar between-group differences. In logistic regression analysis of 46 training set samples, 12 with DNAemia, all obtained between days 0 and 60 from transplant, CMV-specific T-cell frequencies ≥1.7% predicted freedom from DNAemia with NPV of 93%. Sensitivity, specificity, and PPV were 83%, 74%, and 53%, respectively. Test performance was replicated in 99 validation samples. In 32 of 46 training set samples, all from seronegative recipients, one of 19 recipients with CMV-specific T-cell frequencies ≥1.7% experienced DNAemia, compared with 8 of 13 recipients with frequencies <1.7% (P = .001). CMV-specific CD154+ T cells are associated with freedom from DNAemia after LT and IT. Among seronegative recipients, CMV-specific T cells may protect against the development of CMV DNAemia.
Assuntos
Ligante de CD40/sangue , Citomegalovirus/imunologia , Intestinos/transplante , Transplante de Fígado , Complicações Pós-Operatórias/imunologia , Linfócitos T/virologia , Viremia/imunologia , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , DNA Viral/sangue , Feminino , Citometria de Fluxo , Voluntários Saudáveis , Humanos , Imunidade Celular , Lactente , Modelos Logísticos , Masculino , Complicações Pós-Operatórias/virologia , Fatores de Proteção , Valores de Referência , Fatores de Risco , Sensibilidade e Especificidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Viremia/etiologia , Adulto JovemRESUMO
INTRODUCTION: Two clinical studies (Study 1108 and ATLANTIC) were analyzed to evaluate the prognostic value of baseline liver metastases (LMs) in advanced/metastatic non-small-cell lung cancer patients treated with durvalumab 10 mg/kg every 2 weeks. PATIENTS AND METHODS: A multivariate Cox proportional hazards analysis was conducted; covariates included performance status, tumor stage, histology, sex, age, smoking status, and programmed cell death ligand 1 (PD-L1) status. RESULTS: In all, 569 patients were included. LMs were present in 31.6% (96/304) of Study 1108 patients and 17.9% (47/263) of ATLANTIC patients. Median overall survival (OS) was shorter in patients with LMs than in those without in both studies. In both studies, LMs were an independent negative prognostic factor for OS and progression-free survival. Objective response rates were also significantly lower. PD-L1 independently predicted benefit across all patients. CONCLUSION: Liver metastases were associated with worse outcomes irrespective of PD-L1 status, but PD-L1 status predicted benefit from durvalumab irrespective of LMs.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Imunoterapia/métodos , Neoplasias Hepáticas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Idoso , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/secundário , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Metástase Neoplásica , Estadiamento de Neoplasias , Seleção de Pacientes , Prognóstico , Análise de Sobrevida , Resultado do TratamentoRESUMO
BACKGROUND: Immune checkpoint therapies (ICTs) targeting the programmed cell death-1 (PD1)/programmed cell death ligand-1 (PD-L1) pathway have improved outcomes for patients with non-small cell lung cancer (NSCLC), particularly those with high PD-L1 expression. However, the predictive value of manual PD-L1 scoring is imperfect and alternative measures are needed. We report an automated image analysis solution to determine the predictive and prognostic values of the product of PD-L1+ cell and CD8+ tumor infiltrating lymphocyte (TIL) densities (CD8xPD-L1 signature) in baseline tumor biopsies. METHODS: Archival or fresh tumor biopsies were analyzed for PD-L1 and CD8 expression by immunohistochemistry. Samples were collected from 163 patients in Study 1108/NCT01693562, a Phase 1/2 trial to evaluate durvalumab across multiple tumor types, including NSCLC, and a separate cohort of 199 non-ICT- patients. Digital images were automatically scored for PD-L1+ and CD8+ cell densities using customized algorithms applied with Developer XD™ 2.7 software. RESULTS: For patients who received durvalumab, median overall survival (OS) was 21.0 months for CD8xPD-L1 signature-positive patients and 7.8 months for signature-negative patients (p = 0.00002). The CD8xPD-L1 signature provided greater stratification of OS than high densities of CD8+ cells, high densities of PD-L1+ cells, or manually assessed tumor cell PD-L1 expression ≥25%. The CD8xPD-L1 signature did not stratify OS in non-ICT patients, although a high density of CD8+ cells was associated with higher median OS (high: 67 months; low: 39.5 months, p = 0.0009) in this group. CONCLUSIONS: An automated CD8xPD-L1 signature may help to identify NSCLC patients with improved response to durvalumab therapy. Our data also support the prognostic value of CD8+ TILS in NSCLC patients who do not receive ICT. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01693562 . Study code: CD-ON-MEDI4736-1108. Interventional study (ongoing but not currently recruiting). Actual study start date: August 29, 2012. Primary completion date: June 23, 2017 (final data collection date for primary outcome measure).
Assuntos
Anticorpos Monoclonais/uso terapêutico , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/tratamento farmacológico , Pulmão/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/análise , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Biópsia , Antígenos CD8/análise , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Imuno-Histoquímica , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Linfócitos do Interstício Tumoral , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Análise de Sobrevida , Resultado do Tratamento , Adulto JovemRESUMO
Stem cells are maintained by transcriptional programs that promote self-renewal and repress differentiation. Here, we found that the transcription factor c-Myb was essential for generating and maintaining stem cells in the CD8+ T cell memory compartment. Following viral infection, CD8+ T cells lacking Myb underwent terminal differentiation and generated fewer stem cell-like central memory cells than did Myb-sufficient T cells. c-Myb acted both as a transcriptional activator of Tcf7 (which encodes the transcription factor Tcf1) to enhance memory development and as a repressor of Zeb2 (which encodes the transcription factor Zeb2) to hinder effector differentiation. Domain-mutagenesis experiments revealed that the transactivation domain of c-Myb was necessary for restraining differentiation, whereas its negative regulatory domain was critical for cell survival. Myb overexpression enhanced CD8+ T cell memory formation, polyfunctionality and recall responses that promoted curative antitumor immunity after adoptive transfer. These findings identify c-Myb as a pivotal regulator of CD8+ T cell stemness and highlight its therapeutic potential.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Neoplasias Experimentais/imunologia , Proteínas Proto-Oncogênicas c-myb/imunologia , Células-Tronco/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Memória Imunológica/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/virologia , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Células-Tronco/metabolismo , Células-Tronco/virologia , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/imunologia , Fator 1 de Transcrição de Linfócitos T/metabolismoRESUMO
Pyrrolobenzodiazepine dimers (PBD) form cross-links within the minor groove of DNA causing double-strand breaks (DSB). DNA repair genes such as BRCA1 and BRCA2 play important roles in homologous recombination repair of DSB. We hypothesized that PBD-based antibody-drug conjugates (ADC) will have enhanced killing of cells in which homologous recombination processes are defective by inactivation of BRCA1 or BRCA2 genes. To support this hypothesis, we found 5T4-PBD, a PBD-dimer conjugated to anti-5T4 antibody, elicited more potent antitumor activity in tumor xenografts that carry defects in DNA repair due to BRCA mutations compared with BRCA wild-type xenografts. To delineate the role of BRCA1/2 mutations in determining sensitivity to PBD, we used siRNA knockdown and isogenic BRCA1/2 knockout models to demonstrate that BRCA deficiency markedly increased cell sensitivity to PBD-based ADCs. To understand the translational potential of treating patients with BRCA deficiency using PBD-based ADCs, we conducted a "mouse clinical trial" on 23 patient-derived xenograft (PDX) models bearing mutations in BRCA1 or BRCA2 Of these PDX models, 61% to 74% had tumor stasis or regression when treated with a single dose of 0.3 mg/kg or three fractionated doses of 0.1 mg/kg of a PBD-based ADC. Furthermore, a suboptimal dose of PBD-based ADC in combination with olaparib resulted in significantly improved antitumor effects, was not associated with myelotoxicity, and was well tolerated. In conclusion, PBD-based ADC alone or in combination with a PARP inhibitor may have improved therapeutic window in patients with cancer carrying BRCA mutations.