Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 342: 123051, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043771

RESUMO

The microbiome derived from soil associated with plant roots help in plant growth and stress resistance. It exhibits potential benefits for soil remediation and restoration of radioactive-cesium (137Cs)-contaminated soils. However, there is still limited information about the community and diversity of root-associated microbiome in 137Cs-contaminated soil after the Fukushima-Daiichi Nuclear Power Plant (FDNPP) disaster. To address this, a comparative analysis of communities and diversity of root-associated microbiomes was conducted in two field types after the FDNPP disaster. In 2013, we investigated the community and diversity of indigenous root-associated microbiome of napiergrass (Pennisetum purpureum) grown in both grassland and paddy fields of 137Cs-contaminated land-use type within a 30-km radius around the FDNPP. Results showed that the root-associated bacterial communities in napiergrass belonged to 32 phyla, 75 classes, 174 orders, 284 families, and 521 genera, whereas the root-associated fungal communities belonged to 5 phyla, 11 classes, 31 orders, 59 families, and 64 genera. The most frequently observed phylum in both grassland and paddy field was Proteobacteria (47.4% and 55.9%, respectively), followed by Actinobacteriota (23.8% and 27.9%, respectively) and Bacteroidota (10.1% and 11.3%, respectively). The dominant fungal phylum observed in both grassland and paddy field was Basidiomycota (75.9% and 94.2%, respectively), followed by Ascomycota (24.0% and 5.8%, respectively). Land-use type significantly affected the bacterial and fungal communities that colonize the roots of napiergrass. Several 137Cs-tolerant bacterial and fungal taxa were also identified, which may be potentially applied for the phytoremediation of 137Cs-contaminated areas around FDNPP. These findings contribute to a better understanding of the distribution of microbial communities in 137Cs-contaminated lands and their long-term ecosystem benefits for phytoremediation efforts.


Assuntos
Desastres , Acidente Nuclear de Fukushima , Microbiota , Monitoramento de Radiação , Poluentes Radioativos do Solo , Humanos , Poluentes Radioativos do Solo/análise , Japão , Solo , Radioisótopos de Césio/análise , Centrais Nucleares , Monitoramento de Radiação/métodos
2.
Sci Rep ; 10(1): 6039, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245995

RESUMO

Our understanding regarding the influence of intensive agricultural practices, including cover cropping and tillage, on communities of arbuscular mycorrhizal fungi (AMF) is lacking. This would prove to be an obstacle in the improvement of current maize (Zea mays L.) production. Therefore, using amplicon sequencing, we aimed to clarify how AMF communities and their diversity in maize roots vary under different cover cropping systems and two types of tillage (rotary and no tillage). Two kinds of cover crops (hairy vetch and brown mustard) and fallow treatments were established with rotary or no tillage in rotation with maize crops. Tillage and no tillage yielded a set of relatively common AMF operational taxonomic units (OTUs) in the maize crops, representing 78.3% of the total OTUs. The percentage of maize crop OTUs that were specific to only tillage and no tillage were 9.6% and 12.0%, respectively. We found that tillage system significantly altered the AMF communities in maize roots. However, the AMF communities of maize crops among cover cropping treatments did not vary considerably. Our findings indicate that compared with cover cropping, tillage may shape AMF communities in maize more strongly.


Assuntos
Micorrizas/genética , Zea mays/microbiologia , Agricultura , Produção Agrícola , Produtos Agrícolas , Micobioma , Raízes de Plantas , Análise de Sequência de DNA , Microbiologia do Solo , Triticum
3.
Microorganisms ; 8(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991824

RESUMO

Understanding the impact of phosphorus (P) addition on arbuscular mycorrhizal fungi (AMF) is crucial to understanding tomato (Solanum lycopersicum L.) P nutrition. However, it remains unknown how P fertilization is associated with the structure of AMF communities on tomato plants. Thus, we investigated whether levels of P fertilizer interacted with the colonization and structure of AMF in tomato roots in a field trial. In this study, we established three different amounts of P fertilizer treatments (0 kg ha-1, 50 kg ha-1, and 100 kg ha-1). We investigated AMF root colonization and community structure, as well as plant growth in tomatoes at seven weeks following transplantation. The structure of the AMF communities in the roots of tomato were determined by MiSeq amplicon sequencing. As expected, P fertilizer input enhanced the P uptake and plant biomass. In contrast, the P fertilizer level did not affect the AMF root colonization and diversity or the structure of the AMF communities in the tomato. However, we found a negative correlation between AMF colonization and richness in the roots of the tomato plants. Therefore, we need to investigate whether and how AMF communities and P fertilization develop more effective P management for tomato plants.

4.
Sci Rep ; 9(1): 8240, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160630

RESUMO

Arbuscular mycorrhizal fungi (AMF) can be beneficial for improving restoration of radioactive-cesium (137Cs)-contaminated soils through soil remediation. However, there has been no information on species diversity and the composition of AMF communities in 137Cs-contaminated soil after the Fukushima-Daiichi Nuclear Power Plant (NPP) disaster. We examined the community dynamics of indigenous AMF colonizing roots of napiergrass (Pennisetum purpureum) in two different 137Cs-contaminated land-use fields (grassland and paddy field) by an Illumina MiSeq sequencing investigation within a 30-km radius around the Fukushima-Daiichi NPP in 2013 (sampling year 1) and 2014 (sampling year 2). We found nine AMF families, including Glomeraceae, Gigasporaceae, Paraglomeraceae, Claroideoglomeraceae, Acaulosporaceae, Archeosporaceae, Ambisporaceae, Diversisporaceae and uncultured Glomeromycotina in roots. Glomeraceae was the most abundant in both grassland and paddy field, followed by Paraglomeraceae. The diversity of AMF in grassland and paddy field was higher in 2014 than in 2013. Furthermore, the AMF community structure was impacted by sampling year and land-use type. The AMF community structures colonizing napiergrass roots were also significantly impacted by land-use type and year throughout the 2-year investigation. To our knowledge, our results are the first report to reveal the community dynamics of indigenous AMF in the 137Cs-contaminated fields around NPP.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Glomeromycota/metabolismo , Micorrizas/metabolismo , Poluentes Radioativos do Solo/análise , Japão , Micorrizas/classificação , Pennisetum/microbiologia
5.
PeerJ ; 7: e6403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775179

RESUMO

BACKGROUND: Understanding the role of communities of arbuscular mycorrhizal fungi (AMF) in agricultural systems is imperative for enhancing crop production. The key variables influencing change in AMF communities are the type of cover crop species or the type of subsequent host crop species. However, how maize and soybean performance is related to the diversity of AMF communities in cover cropping systems remains unclear. We therefore investigated which cover cropping or host identity is the most important factor in shaping AMF community structure in subsequent crop roots using an Illumina Miseq platform amplicon sequencing. METHODS: In this study, we established three cover crop systems (Italian ryegrass, hairy vetch, and brown mustard) or bare fallow prior to planting maize and soybean as cash crops. After cover cropping, we divided the cover crop experimental plots into two subsequent crop plots (maize and soybean) to understand which cover cropping or host crop identity is an important factor for determining the AMF communities and diversity both in maize and soybeans. RESULTS: We found that most of the operational taxonomic units (OTUs) in root samples were common in both maize and soybean, and the proportion of common generalists in this experiment for maize and soybean roots was 79.5% according to the multinomial species classification method (CLAM test). The proportion of OTUs specifically detected in only maize and soybean was 9.6% and 10.8%, respectively. Additionally, the cover cropping noticeably altered the AMF community structure in the maize and soybean roots. However, the differentiation of AMF communities between maize and soybean was not significantly different. DISCUSSION: Our results suggest cover cropping prior to planting maize and soybean may be a strong factor for shaping AMF community structure in subsequent maize and soybean roots rather than two host crop identities. Additionally, we could not determine the suitable rotational combination for cover crops and subsequent maize and soybean crops to improve the diversity of the AMF communities in their roots. However, our findings may have implications for understanding suitable rotational combinations between cover crops and subsequent cash crops and further research should investigate in-depth the benefit of AMF on cash crop performances in cover crop rotational systems.

6.
PeerJ ; 6: e4606, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682413

RESUMO

BACKGROUND: Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans (Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. METHODS: In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha-1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. RESULTS: The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. DISCUSSION: Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance.

7.
J Sci Food Agric ; 98(4): 1388-1396, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28759105

RESUMO

BACKGROUND: Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. RESULTS: The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. CONCLUSION: AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry.


Assuntos
Agricultura/métodos , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Zea mays/crescimento & desenvolvimento , Produção Agrícola/métodos , Lolium/crescimento & desenvolvimento , Mostardeira/crescimento & desenvolvimento , Micorrizas/fisiologia , Fósforo , Microbiologia do Solo , Triticum/crescimento & desenvolvimento
8.
J Microbiol ; 54(2): 86-97, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26832664

RESUMO

A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.


Assuntos
Biota , Fungos/classificação , Variação Genética , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Trifolium/microbiologia , Triticum/microbiologia , DNA Fúngico/química , DNA Fúngico/genética , Fungos/genética , Fungos/isolamento & purificação , Dados de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , Estações do Ano , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA