Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Methods Mol Biol ; 2806: 41-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676795

RESUMO

Patient-derived orthotopic xenograft (PDOX) mouse models are considered the gold standard for evidence-based preclinical research in pediatric neuro-oncology. This protocol describes the generation of PDOX models by intracranial implantation of human pediatric brain cancer cells into immune-deficient mice, and their continued propagation to establish cohorts of animals for preclinical research.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Animais , Neoplasias Encefálicas/patologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Criança , Gradação de Tumores , Xenoenxertos
2.
Front Oncol ; 13: 1123492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937401

RESUMO

Introduction: Ependymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who survive treatment often suffer long-term neurological side effects as a result of therapy. It is evident that there is a need for safer, more effective treatments for pediatric EPN patients. There are ten distinct subgroups of EPN, each with their own molecular and prognostic features. To identify and facilitate the testing of new treatments for EPN, in vivo laboratory models representative of the diverse molecular subtypes are required. Here, we describe the establishment of a patient-derived orthotopic xenograft (PDOX) model of posterior fossa A (PFA) EPN, derived from a metastatic cranial lesion. Methods: Patient and PDOX tumors were analyzed using immunohistochemistry, DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. Results: Both patient and PDOX tumors classified as PFA EPN by methylation profiling, and shared similar histological features consistent with this molecular subgroup. RNA sequencing revealed that gene expression patterns were maintained across the primary and metastatic tumors, as well as the PDOX. Copy number profiling revealed gains of chromosomes 7, 8 and 19, and loss of chromosomes 2q and 6q in the PDOX and matched patient tumor. No clinically significant single nucleotide variants were identified, consistent with the low mutation rates observed in PFA EPN. Overexpression of EZHIP RNA and protein, a common feature of PFA EPN, was also observed. Despite the aggressive nature of the tumor in the patient, this PDOX was unable to be maintained past two passages in vivo. Discussion: Others who have successfully developed PDOX models report some of the lowest success rates for EPN compared to other pediatric brain cancer types attempted, with loss of tumorigenicity not uncommon, highlighting the challenges of propagating these tumors in the laboratory. Here, we discuss our collective experiences with PFA EPN PDOX model generation and propose potential approaches to improve future success in establishing preclinical EPN models.

3.
Front Mol Biosci ; 8: 633344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996894

RESUMO

Medulloblastoma is the most common malignant childhood brain tumor, and 5-year overall survival rates are as low as 40% depending on molecular subtype, with new therapies critically important. As radiotherapy and chemotherapy act through the induction of DNA damage, the sensitization of cancer cells through the inhibition of DNA damage repair pathways is a potential therapeutic strategy. The poly-(ADP-ribose) polymerase (PARP) inhibitor veliparib was assessed for its ability to augment the cellular response to radiation-induced DNA damage in human medulloblastoma cells. DNA repair following irradiation was assessed using the alkaline comet assay, with veliparib inhibiting the rate of DNA repair. Veliparib treatment also increased the number of γH2AX foci in cells treated with radiation, and analysis of downstream pathways indicated persistent activation of the DNA damage response pathway. Clonogenicity assays demonstrated that veliparib effectively inhibited the colony-forming capacity of medulloblastoma cells, both as a single agent and in combination with irradiation. These data were then validated in vivo using an orthotopic implant model of medulloblastoma. Mice harboring intracranial D425 medulloblastoma xenografts were treated with vehicle, veliparib, 18 Gy multifractionated craniospinal irradiation (CSI), or veliparib combined with 18 Gy CSI. Animals treated with combination therapy exhibited reduced tumor growth rates concomitant with increased intra-tumoral apoptosis observed by immunohistochemistry. Kaplan-Meier analyses revealed a statistically significant increase in survival with combination therapy compared to CSI alone. In summary, PARP inhibition enhanced radiation-induced cytotoxicity of medulloblastoma cells; thus, veliparib or other brain-penetrant PARP inhibitors are potential radiosensitizing agents for the treatment of medulloblastoma.

4.
Sci Transl Med ; 13(577)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472956

RESUMO

Medulloblastoma (MB) consists of four core molecular subgroups with distinct clinical features and prognoses. Treatment consists of surgery, followed by radiotherapy and cytotoxic chemotherapy. Despite this intensive approach, outcome remains dismal for patients with certain subtypes of MB, namely, MYC-amplified Group 3 and TP53-mutated SHH. Using high-throughput assays, six human MB cell lines were screened against a library of 3208 unique compounds. We identified 45 effective compounds from the screen and found that cell cycle checkpoint kinase (CHK1/2) inhibition synergistically enhanced the cytotoxic activity of clinically used chemotherapeutics cyclophosphamide, cisplatin, and gemcitabine. To identify the best-in-class inhibitor, multiple CHK1/2 inhibitors were assessed in mice bearing intracranial MB. When combined with DNA-damaging chemotherapeutics, CHK1/2 inhibition reduced tumor burden and increased survival of animals with high-risk MB, across multiple different models. In total, we tested 14 different models, representing distinct MB subgroups, and data were validated in three independent laboratories. Pharmacodynamics studies confirmed central nervous system penetration. In mice, combination treatment significantly increased DNA damage and apoptosis compared to chemotherapy alone, and studies with cultured cells showed that CHK inhibition disrupted chemotherapy-induced cell cycle arrest. Our findings indicated CHK1/2 inhibition, specifically with LY2606368 (prexasertib), has strong chemosensitizing activity in MB that warrants further clinical investigation. Moreover, these data demonstrated that we developed a robust and collaborative preclinical assessment platform that can be used to identify potentially effective new therapies for clinical evaluation for pediatric MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , DNA , Humanos , Meduloblastoma/tratamento farmacológico , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
5.
Cancers (Basel) ; 13(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477420

RESUMO

Children with medulloblastoma and ependymoma are treated with a multidisciplinary approach that incorporates surgery, radiotherapy, and chemotherapy; however, overall survival rates for patients with high-risk disease remain unsatisfactory. Data indicate that plant-derived cannabinoids are effective against adult glioblastoma; however, preclinical evidence supporting their use in pediatric brain cancers is lacking. Here we investigated the potential role for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in medulloblastoma and ependymoma. Dose-dependent cytotoxicity of medulloblastoma and ependymoma cells was induced by THC and CBD in vitro, and a synergistic reduction in viability was observed when both drugs were combined. Mechanistically, cannabinoids induced cell cycle arrest, in part by the production of reactive oxygen species, autophagy, and apoptosis; however, this did not translate to increased survival in orthotopic transplant models despite being well tolerated. We also tested the combination of cannabinoids with the medulloblastoma drug cyclophosphamide, and despite some in vitro synergism, no survival advantage was observed in vivo. Consequently, clinical benefit from the use of cannabinoids in the treatment of high-grade medulloblastoma and ependymoma is expected to be limited. This study emphasizes the importance of preclinical models in validating therapeutic agent efficacy prior to clinical trials, ensuring that enrolled patients are afforded the most promising therapies available.

6.
Cancers (Basel) ; 12(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053751

RESUMO

Radiation-induced glioma (RIG) is a highly aggressive brain cancer arising as a consequence of radiation therapy. We report a case of RIG that arose in the brain stem following treatment for paediatric medulloblastoma, and the development and characterisation of a matched orthotopic patient-derived xenograft (PDX) model (TK-RIG915). Patient and PDX tumours were analysed using DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. While initially thought to be a diffuse intrinsic pontine glioma (DIPG) based on disease location, results from methylation profiling and WGS were not consistent with this diagnosis. Furthermore, clustering analyses based on RNA expression suggested the tumours were distinct from primary DIPG. Additional gene expression analysis demonstrated concordance with a published RIG expression profile. Multiple genetic alterations that enhance PI3K/AKT and Ras/Raf/MEK/ERK signalling were discovered in TK-RIG915 including an activating mutation in PIK3CA, upregulation of PDGFRA and AKT2, inactivating mutations in NF1, and a gain-of-function mutation in PTPN11. Additionally, deletion of CDKN2A/B, increased IDH1 expression, and decreased ARID1A expression were observed. Detection of phosphorylated S6, 4EBP1 and ERK via immunohistochemistry confirmed PI3K pathway and ERK activation. Here, we report one of the first PDX models for RIG, which recapitulates the patient disease and is molecularly distinct from primary brain stem glioma. Genetic interrogation of this model has enabled the identification of potential therapeutic vulnerabilities in this currently incurable disease.

7.
Neoplasia ; 20(5): 432-442, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29574250

RESUMO

Glioblastoma in adults, and medulloblastoma and pineoblastoma that mainly affect children, are aggressive brain tumors. The survival for patients with glioblastoma remains dismal. While the cure rate for medulloblastoma exceeds 70%, this figure has stagnated over the past few decades and survivors still contend with significant long-term debilitating side effects. The prognosis for pineoblastoma is age-dependent, with little chance of a cure for children younger than three years. More effective molecularly targeted strategies are urgently required to treat these cancers. Hyper-activation of epidermal growth factor receptor (EGFR) signaling is characteristic of several different classes of human cancers, including a subset of glioblastoma and medulloblastoma. This has provided the impetus for the development of a suite of EGFR pathway blockers, including second generation irreversible inhibitors, such as dacomitinib. We have developed a comprehensive drug evaluation pipeline, including in vitro interaction analyses and orthotopic xenograft mouse models, to address the efficacy of drugs for brain tumor treatment, enabling the exclusion of potentially ineffective treatments and prioritization of truly beneficial novel treatments for clinical trial. We used this system to examine the effects of dacomitinib as a single agent, or in combination with conventional chemotherapeutics, on the growth of human adult and pediatric brain tumor cell lines. Dacomitinib inhibited EGFR or EGFRvIII activity in vitro in all three tumor types tested, and as a single agent induced a modest increase in survival time for mice bearing glioblastoma, which accurately predicted human clinical trial data. For pediatric medulloblastoma, dacomitinib blocked EGFR/HER signalling in orthotopic xenografts and extended median survival as a single agent, however was antagonistic when used in combination with standard frontline medulloblastoma chemotherapies. The findings caution against the use of dacomitinib for pediatric brain tumor clinical trials.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Quinazolinonas/farmacologia , Adulto , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Criança , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos
8.
PLoS One ; 12(4): e0175169, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28394918

RESUMO

Biopsy is often used to investigate brain tumour-specific abnormalities so that treatments can be appropriately tailored. Dacomitinib (PF-00299804) is a tyrosine kinase inhibitor (TKI), which is predicted to only be effective in cancers where the targets of this drug (EGFR, ERBB2, ERBB4) are abnormally active. Here we describe a method by which serial biopsy can be used to validate response to dacomitinib treatment in vivo using a mouse glioblastoma model. In order to determine the feasibility of conducting serial brain biopsies in mouse models with minimal morbidity, and if successful, investigate whether this can facilitate evaluation of chemotherapeutic response, an orthotopic model of glioblastoma was used. Immunodeficient mice received cortical implants of the human glioblastoma cell line, U87MG, modified to express the constitutively-active EGFR mutant, EGFRvIII, GFP and luciferase. Tumour growth was monitored using bioluminescence imaging. Upon attainment of a moderate tumour size, free-hand biopsy was performed on a subgroup of animals. Animal monitoring using a neurological severity score (NSS) showed that all mice survived the procedure with minimal perioperative morbidity and recovered to similar levels as controls over a period of five days. The technique was used to evaluate dacomitinib-mediated inhibition of EGFRvIII two hours after drug administration. We show that serial tissue samples can be obtained, that the samples retain histological features of the tumour, and are of sufficient quality to determine response to treatment. This approach represents a significant advance in murine brain surgery that may be applicable to other brain tumour models. Importantly, the methodology has the potential to accelerate the preclinical in vivo drug screening process.


Assuntos
Biópsia/métodos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Quinazolinonas/farmacologia , Índice de Gravidade de Doença , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Acta Neuropathol ; 127(2): 189-201, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24264598

RESUMO

Medulloblastoma is curable in approximately 70% of patients. Over the past decade, progress in improving survival using conventional therapies has stalled, resulting in reduced quality of life due to treatment-related side effects, which are a major concern in survivors. The vast amount of genomic and molecular data generated over the last 5-10 years encourages optimism that improved risk stratification and new molecular targets will improve outcomes. It is now clear that medulloblastoma is not a single-disease entity, but instead consists of at least four distinct molecular subgroups: WNT/Wingless, Sonic Hedgehog, Group 3, and Group 4. The Medulloblastoma Down Under 2013 meeting, which convened at Bunker Bay, Australia, brought together 50 leading clinicians and scientists. The 2-day agenda included focused sessions on pathology and molecular stratification, genomics and mouse models, high-throughput drug screening, and clinical trial design. The meeting established a global action plan to translate novel biologic insights and drug targeting into treatment regimens to improve outcomes. A consensus was reached in several key areas, with the most important being that a novel classification scheme for medulloblastoma based on the four molecular subgroups, as well as histopathologic features, should be presented for consideration in the upcoming fifth edition of the World Health Organization's classification of tumours of the central nervous system. Three other notable areas of agreement were as follows: (1) to establish a central repository of annotated mouse models that are readily accessible and freely available to the international research community; (2) to institute common eligibility criteria between the Children's Oncology Group and the International Society of Paediatric Oncology Europe and initiate joint or parallel clinical trials; (3) to share preliminary high-throughput screening data across discovery labs to hasten the development of novel therapeutics. Medulloblastoma Down Under 2013 was an effective forum for meaningful discussion, which resulted in enhancing international collaborative clinical and translational research of this rare disease. This template could be applied to other fields to devise global action plans addressing all aspects of a disease, from improved disease classification, treatment stratification, and drug targeting to superior treatment regimens to be assessed in cooperative international clinical trials.


Assuntos
Neoplasias Cerebelares , Agências Internacionais , Meduloblastoma , Adolescente , Animais , Antineoplásicos/uso terapêutico , Austrália , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Genômica , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos
10.
Cogn Neuropsychiatry ; 18(5): 355-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22803827

RESUMO

INTRODUCTION: Neurocognitive deficits have been identified in eating disorders, including anorexia nervosa and bulimia nervosa. However, current data do not allow for firm conclusions regarding the nature or extent of these deficits. The current study aimed to evaluate neurocognitive functioning in a population-based sample of adolescents with and without eating disorders. METHODS: Participants (N=669) were drawn from the Western Australian Pregnancy Cohort (Raine) Study. Cognitive testing was conducted using the computerised CogState assessment battery. Eating disorder symptoms were assessed using questions adapted from the Child Eating Disorder Examination and Eating Disorder Examination-Questionnaire. Adolescents who met full or partial criteria for a DSM-IV eating disorder (n=58) were compared to adolescents with no significant eating pathology (n=592). RESULTS: The eating disorder sample showed impaired performance on measures of executive functioning, including global processing and set shifting, but performed better than control participants on measures of visual attention and vigilance. CONCLUSIONS: This is the first study to evaluate neurocognitive functioning in a population-based sample of adolescents with eating disorders. Support is provided for weak central coherence and set-shifting difficulties early in the course of eating disorders. Research is needed to determine if these deficits precede and predict eating disorder onset.


Assuntos
Anorexia Nervosa/psicologia , Transtorno da Compulsão Alimentar/psicologia , Cognição , Enquadramento Psicológico , Adolescente , Anorexia Nervosa/diagnóstico , Anorexia Nervosa/fisiopatologia , Austrália , Transtorno da Compulsão Alimentar/diagnóstico , Transtorno da Compulsão Alimentar/fisiopatologia , Criança , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Seguimentos , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Rememoração Mental , Testes Neuropsicológicos , Gravidez
11.
Psychoneuroendocrinology ; 38(8): 1271-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23218518

RESUMO

Dysfunctional regulation of the hypothalamic-pituitary-adrenal (HPA) axis has been proposed as an important biological mechanism underlying stress-related diseases; however, a better understanding of the interlinked neuroendocrine events driving the release of cortisol by this stress axis is essential for progress in preventing or halting irreversible development of adverse HPA-function. We aimed to investigate basal HPA-activity in a normal population in late adolescence, the time of life believed to overlap with HPA-axis maturation and establishment of a lasting set point level of HPA function. A total of 1258 participants (mean age 16.6 years) recruited from the Western Australian Pregnancy (Raine) Cohort provided fasting morning blood and saliva samples for basal HPA activity assessment. Irrespective of gender, linear regression modelling identified a positive correlation between the main components of the HPA-cascade of events, ACTH, total cortisol and free cortisol in saliva. Corticosteroid binding globulin (CBG) was inversely associated with free cortisol in saliva, an effect most clearly observed in boys. ACTH levels were lower, but cortisol levels were higher in girls than in boys. Girls may also be exposed to more bioactive cortisol, based on higher average free cortisol measured in saliva at awakening. These relatively higher female free cortisol levels were significantly reduced by oral contraceptive use, eliminating the gender specific difference in salivary cortisol. Free plasma cortisol, calculated from total circulating cortisol and CBG concentrations, was also significantly reduced in girls using oral contraceptives, possibly via an enhancing effect of oral contraceptives on blood CBG content. This study highlights a clear gender difference in HPA activity under non-stressful natural conditions. This finding may be relevant for research into sex-specific stress-related diseases with a typical onset in late adolescence.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Hormônio Adrenocorticotrópico/metabolismo , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Caracteres Sexuais , Estresse Psicológico/metabolismo , Transcortina/metabolismo , Adolescente , Hormônio Adrenocorticotrópico/sangue , Feminino , Humanos , Hidrocortisona/sangue , Masculino , Valores de Referência , Saliva/metabolismo
12.
J Psychopharmacol ; 25(1): 60-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19939878

RESUMO

Glucose administration is associated with memory enhancement in healthy young individuals under conditions of divided attention at encoding. While the specific neurocognitive mechanisms underlying this 'glucose memory facilitation effect' are currently uncertain, it is thought that individual differences in glucoregulatory efficiency may alter an individual's sensitivity to the glucose memory facilitation effect. In the present study, we sought to investigate whether basal hypothalamic-pituitary-adrenal axis function (itself a modulator of glucoregulatory efficiency), baseline self-reported stress and trait anxiety influence the glucose memory facilitation effect. Adolescent males (age range = 14-17 years) were administered glucose and placebo prior to completing a verbal episodic memory task on two separate testing days in a counter-balanced, within-subjects design. Glucose ingestion improved verbal episodic memory performance when memory recall was tested (i) within an hour of glucose ingestion and encoding, and (ii) one week subsequent to glucose ingestion and encoding. Basal hypothalamic-pituitary-adrenal axis function did not appear to influence the glucose memory facilitation effect; however, glucose ingestion only improved memory in participants reporting relatively higher trait anxiety. These findings suggest that the glucose memory facilitation effect may be mediated by biological mechanisms associated with trait anxiety.


Assuntos
Ansiedade , Glucose/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Memória/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Adolescente , Glicemia/análise , Glucose/administração & dosagem , Humanos , Hidrocortisona/análise , Masculino , Rememoração Mental/efeitos dos fármacos , Testes Neuropsicológicos , Placebos , Escalas de Graduação Psiquiátrica , Saliva , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA