Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS One ; 14(2): e0212497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30818394

RESUMO

An early warning system for dengue is meant to predict outbreaks and prevent dengue cases by aiding timely decision making and deployment of interventions. However, only a system which is accepted and utilised by the public would be sustainable in the long run. This study aimed to explore the perception and attitude of the Malaysian public towards a dengue early warning system. The sample consisted of 847 individuals who were 18 years and above and living/working in the Petaling District, an area adjacent to Kuala Lumpur, Malaysia. A questionnaire consisting of personal information and three sub-measures of; i) perception, ii) attitude towards dengue early warning and iii) response towards early warning; was distributed to participants. We found that most of the respondents know about dengue fever (97.1%) and its association with climate factors (90.6%). Most of them wanted to help reduce the number of dengue cases in their area (91.5%). A small percentage of the respondents admitted that they were not willing to be involved in public activities, and 64% of them admitted that they did not check dengue situations or hotspots around their area regularly. Despite the high awareness on the relationship between climate and dengue, about 45% of respondents do not know or are not sure how this can be used to predict dengue. Respondents would like to know more about how climate data can be used to predict a dengue outbreak (92.7%). Providing more information on how climate can influence dengue cases would increase public acceptability and improve response towards climate-based warning system. The most preferred way of communicating early warning was through the television (66.4%). This study shows that the public in Petaling District considers it necessary to have a dengue warning system to be necessary, but more education is required.


Assuntos
Dengue/prevenção & controle , Adolescente , Adulto , Idoso , Atitude Frente a Saúde , Clima , Estudos Transversais , Tomada de Decisões , Dengue/epidemiologia , Dengue/psicologia , Surtos de Doenças/prevenção & controle , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Opinião Pública , Fatores Socioeconômicos , Inquéritos e Questionários , Adulto Jovem
2.
PLoS One ; 11(3): e0152688, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031524

RESUMO

Research is needed to create early warnings of dengue outbreaks to inform stakeholders and control the disease. This analysis composes of a comparative set of prediction models including only meteorological variables; only lag variables of disease surveillance; as well as combinations of meteorological and lag disease surveillance variables. Generalized linear regression models were used to fit relationships between the predictor variables and the dengue surveillance data as outcome variable on the basis of data from 2001 to 2010. Data from 2011 to 2013 were used for external validation purposed of prediction accuracy of the model. Model fit were evaluated based on prediction performance in terms of detecting epidemics, and for number of predicted cases according to RMSE and SRMSE, as well as AIC. An optimal combination of meteorology and autoregressive lag terms of dengue counts in the past were identified best in predicting dengue incidence and the occurrence of dengue epidemics. Past data on disease surveillance, as predictor alone, visually gave reasonably accurate results for outbreak periods, but not for non-outbreaks periods. A combination of surveillance and meteorological data including lag patterns up to a few years in the past showed most predictive of dengue incidence and occurrence in Yogyakarta, Indonesia. The external validation showed poorer results than the internal validation, but still showed skill in detecting outbreaks up to two months ahead. Prior studies support the fact that past meteorology and surveillance data can be predictive of dengue. However, to a less extent has prior research shown how the longer-term past disease incidence data, up to years, can play a role in predicting outbreaks in the coming years, possibly indicating cross-immunity status of the population.


Assuntos
Dengue/epidemiologia , Conceitos Meteorológicos , Clima , Dengue/diagnóstico , Dengue/transmissão , Vírus da Dengue/isolamento & purificação , Surtos de Doenças , Humanos , Umidade , Incidência , Indonésia/epidemiologia , Modelos Lineares , Modelos Biológicos , Modelos Estatísticos , Chuva , Temperatura
3.
Curr Environ Health Rep ; 3(1): 81-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26931438

RESUMO

BACKGROUND & OBJECTIVES: Dengue is a climate-sensitive infectious disease. Climate-based dengue early warning may be a simple, low-cost, and effective tool for enhancing surveillance and control. Scientific studies on climate and dengue in local context form the basis for advancing the development of a climate-based early warning system. This study aims to review the current status of scientific studies in climate and dengue and the prospect or challenges of such research on a climate-based dengue early warning system in a dengue-endemic country, taking Malaysia as a case study. METHOD: We reviewed the relationship between climate and dengue derived from statistical modeling, laboratory tests, and field studies. We searched electronic databases including PubMed, Scopus, EBSCO (MEDLINE), Web of Science, and the World Health Organization publications, and assessed climate factors and their influence on dengue cases, mosquitoes, and virus and recent development in the field of climate and dengue. RESULTS & DISCUSSION: Few studies in Malaysia have emphasized the relationship between climate and dengue. Climatic factors such as temperature, rainfall, and humidity are associated with dengue; however, these relationships were not consistent. Climate change projections for Malaysia show a mounting risk for dengue in the future. Scientific studies on climate and dengue enhance dengue surveillance in the long run. CONCLUSION: It is essential for institutions in Malaysia to promote research on climate and vector-borne diseases to advance the development of climate-based early warning systems. Together, effective strategies that improve existing research capacity, maximize the use of limited resources, and promote local-international partnership are crucial for sustaining research on climate and health.


Assuntos
Pesquisa Biomédica , Clima , Controle de Doenças Transmissíveis/métodos , Dengue/epidemiologia , Dengue/prevenção & controle , Previsões/métodos , Humanos , Malásia/epidemiologia , Fatores de Risco , Tempo (Meteorologia)
4.
Int J Environ Res Public Health ; 11(10): 10694-709, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25325356

RESUMO

Dengue and malaria are vector-borne diseases and major public health problems worldwide. Changes in climatic factors influence incidences of these diseases. The objective of this study was to investigate the relationship between vector-borne disease incidences and meteorological data, and hence to predict disease risk in a global outreach tourist setting. The retrospective data of dengue and malaria incidences together with local meteorological factors (temperature, rainfall, humidity) registered from 2001 to 2011 on Koh Chang, Thailand were used in this study. Seasonal distribution of disease incidences and its correlation with local climatic factors were analyzed. Seasonal patterns in disease transmission differed between dengue and malaria. Monthly meteorological data and reported disease incidences showed good predictive ability of disease transmission patterns. These findings provide a rational basis for identifying the predictive ability of local meteorological factors on disease incidence that may be useful for the implementation of disease prevention and vector control programs on the tourism island, where climatic factors fluctuate.


Assuntos
Clima , Dengue/epidemiologia , Incidência , Malária/epidemiologia , Modelos Estatísticos , Animais , Dengue/transmissão , Humanos , Umidade , Insetos Vetores , Malária/transmissão , Chuva , Estudos Retrospectivos , Estações do Ano , Temperatura , Tailândia/epidemiologia
5.
PLoS Negl Trop Dis ; 6(11): e1908, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209852

RESUMO

INTRODUCTION: An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict dengue cases and provide timely early warning in Singapore. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a time series Poisson multivariate regression model using weekly mean temperature and cumulative rainfall over the period 2000-2010. Weather data were modeled using piecewise linear spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and validation were based on Akaike's Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish between outbreak and non-outbreak to a 96% (CI = 93-98%) in 2004-2010 and 98% (CI = 95%-100%) in 2011. The model predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm. SIGNIFICANCE: We have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited resources.


Assuntos
Dengue/epidemiologia , Métodos Epidemiológicos , Humanos , Incidência , Modelos Estatísticos , Chuva , Sensibilidade e Especificidade , Singapura/epidemiologia , Temperatura
6.
PLoS Negl Trop Dis ; 6(10): e1848, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110242

RESUMO

BACKGROUND: A dengue early warning system aims to prevent a dengue outbreak by providing an accurate prediction of a rise in dengue cases and sufficient time to allow timely decisions and preventive measures to be taken by local authorities. This study seeks to identify the optimal lead time for warning of dengue cases in Singapore given the duration required by a local authority to curb an outbreak. METHODOLOGY AND FINDINGS: We developed a Poisson regression model to analyze relative risks of dengue cases as functions of weekly mean temperature and cumulative rainfall with lag times of 1-5 months using spline functions. We examined the duration of vector control and cluster management in dengue clusters > = 10 cases from 2000 to 2010 and used the information as an indicative window of the time required to mitigate an outbreak. Finally, we assessed the gap between forecast and successful control to determine the optimal timing for issuing an early warning in the study area. Our findings show that increasing weekly mean temperature and cumulative rainfall precede risks of increasing dengue cases by 4-20 and 8-20 weeks, respectively. These lag times provided a forecast window of 1-5 months based on the observed weather data. Based on previous vector control operations, the time needed to curb dengue outbreaks ranged from 1-3 months with a median duration of 2 months. Thus, a dengue early warning forecast given 3 months ahead of the onset of a probable epidemic would give local authorities sufficient time to mitigate an outbreak. CONCLUSIONS: Optimal timing of a dengue forecast increases the functional value of an early warning system and enhances cost-effectiveness of vector control operations in response to forecasted risks. We emphasize the importance of considering the forecast-mitigation gaps in respective study areas when developing a dengue forecasting model.


Assuntos
Dengue/epidemiologia , Dengue/prevenção & controle , Surtos de Doenças/prevenção & controle , Previsões/métodos , Humanos , Controle de Insetos/métodos , Modelos Estatísticos , Singapura/epidemiologia , Fatores de Tempo , Tempo (Meteorologia)
7.
PLoS One ; 6(2): e16796, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21347303

RESUMO

BACKGROUND: Hand, foot, and mouth disease (HFMD) outbreaks leading to clinical and fatal complications have increased since late 1990s; especially in the Asia Pacific Region. Outbreaks of HFMD peaks in the warmer season of the year, but the underlying factors for this annual pattern and the reasons to the recent upsurge trend have not yet been established. This study analyzed the effect of short-term changes in weather on the incidence of HFMD in Singapore. METHODS: The relative risks between weekly HFMD cases and temperature and rainfall were estimated for the period 2001-2008 using time series Poisson regression models allowing for over-dispersion. Smoothing was used to allow non-linear relationship between weather and weekly HFMD cases, and to adjust for seasonality and long-term time trend. Additionally, autocorrelation was controlled and weather was allowed to have a lagged effect on HFMD incidence up to 2 weeks. RESULTS: Weekly temperature and rainfall showed statistically significant association with HFMD incidence at time lag of 1-2 weeks. Every 1°C increases in maximum temperature above 32°C elevated the risk of HFMD incidence by 36% (95% CI = 1.341-1.389). Simultaneously, one mm increase of weekly cumulative rainfall below 75 mm increased the risk of HFMD by 0.3% (CI = 1.002-1.003). While above 75 mm the effect was opposite and each mm increases of rainfall decreased the incidence by 0.5% (CI = 0.995-0.996). We also found that a difference between minimum and maximum temperature greater than 7°C elevated the risk of HFMD by 41% (CI = 1.388-1.439). CONCLUSION: Our findings suggest a strong association between HFMD and weather. However, the exact reason for the association is yet to be studied. Information on maximum temperature above 32°C and moderate rainfall precede HFMD incidence could help to control and curb the up-surging trend of HFMD.


Assuntos
Doença de Mão, Pé e Boca/epidemiologia , Tempo (Meteorologia) , Surtos de Doenças , Chuva , Risco , Singapura/epidemiologia , Temperatura , Fatores de Tempo
8.
Glob Health Action ; 22009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20052380

RESUMO

INTRODUCTION: Dengue is currently a major public health burden in Asia Pacific Region. This study aims to establish an association between dengue incidence, mean temperature and precipitation, and further discuss how weather predictors influence the increase in intensity and magnitude of dengue in Singapore during the period 2000-2007. MATERIALS AND METHODS: Weekly dengue incidence data, daily mean temperature and precipitation and the midyear population data in Singapore during 2000-2007 were retrieved and analysed. We employed a time series Poisson regression model including time factors such as time trends, lagged terms of weather predictors, considered autocorrelation, and accounted for changes in population size by offsetting. RESULTS: The weekly mean temperature and cumulative precipitation were statistically significant related to the increases of dengue incidence in Singapore. Our findings showed that dengue incidence increased linearly at time lag of 5-16 and 5-20 weeks succeeding elevated temperature and precipitation, respectively. However, negative association occurred at lag week 17-20 with low weekly mean temperature as well as lag week 1-4 and 17-20 with low cumulative precipitation. DISCUSSION: As Singapore experienced higher weekly mean temperature and cumulative precipitation in the years 2004-2007, our results signified hazardous impacts of climate factors on the increase in intensity and magnitude of dengue cases. The ongoing global climate change might potentially increase the burden of dengue fever infection in near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA