Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 2484, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736918

RESUMO

The interaction between bacteriophages, bacteria and the human host as a tripartite system has recently captured attention. The taxonomic diversity of bacteriophages, as a natural parasite of bacteria, still remains obscure in human body biomes, representing a so-called "viral dark matter." Here, we isolated and characterized coliphages from blood, urine and tracheal aspirates samples collected at a tertiary care hospital in Austria. Phages were more often isolated from blood, followed by urine and tracheal aspirates. Phylogenetic analysis and genome comparisons allowed the identification of phages belonging to the Tunavirinae subfamily, and to the Peduovirus and Tequintavirus genera. Tunavirinae phages cluster together and are found in samples from 14 patients, suggesting their prevalence across a variety of human samples. When compared with other phage genomes, the highest similarity level was at 87.69% average nucleotide identity (ANI), which suggests that these are in fact a newly isolated phage species. Tequintavirus phages share a 95.90% with phage 3_29, challenging the ANI threshold currently accepted to differentiate phage species. The isolated phages appear to be virulent, with the exception of the Peduovirus members, which are integrative and seem to reside as prophages in bacterial genomes.

2.
J Clin Med ; 8(9)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510095

RESUMO

Intensive care units (ICUs) are critical locations for the transmission of pathogenic and opportunistic microorganisms. Bacteria may develop a synergistic relationship with bacteriophages and more effectively resist various stresses, enabling them to persist despite disinfection and antimicrobial treatment. We collected 77 environmental samples from the surroundings of 12 patients with infection/colonizations by Escherichia coli, Staphylococcus aureus or Klebsiella spp in an ICU in Austria. Surface swabs were tested for lytic phages and bacterial isolates for mitomycin C-inducible prophages. No lytic bacteriophages were detected, but S. aureus was isolated from the surroundings of all patients. About 85% of the colonies isolated from surface samples were resistant to antimicrobials, with 94% of them multidrug resistant. Two inducible temperate bacteriophages-myovirus vB_EcoM_P5 and siphovirus vB_SauS_P9-were recovered from two clinical isolates. Staphylococci phage vB_SauS_P9 lysed S. aureus isolates from the surface swabs collected from the surroundings of three patients. No transductants were obtained on propagation in phage-sensitive antimicrobial-resistant isolates. The two phages were sensitive to 0.25% (v/v) of the disinfectant TPH Protect, which eliminated viable phages after 15 min. Coliphage vB_EcoM_P5 was inactivated at 70 °C and staphylococci phage vB_SauS_P9 at 60 °C after 60 min.

3.
Eur J Microbiol Immunol (Bp) ; 7(4): 296-302, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29403658

RESUMO

In the past, the horizontal transfer of antimicrobial resistance genes was mainly associated with conjugative plasmids or transposons, whereas transduction by bacteriophages was thought to be a rare event. In order to analyze the likelihood of transduction of antimicrobial resistance in the field of clinical veterinary medicine, we isolated phages from Escherichia coli from a surgery suite of an equine clinic. In a pilot study, the surgery suite of a horse clinic was sampled directly after surgery and subsequently sampled after cleaning and disinfection following a sampling plan based on hygiene, surgery, and anesthesia. In total, 31 surface sampling sites were defined and sampled. At 24 of these 31 surface sampling sites, coliphages were isolated. At 12 sites, coliphages were found after cleaning and disinfection. Randomly selected phages were tested for their ability of antimicrobial resistance transduction. Ten of 31 phages were detected to transfer antimicrobial resistance. These phages most often transduced resistance to streptomycin, encoded by the addA1 gene (n = 9), followed by resistance to chloramphenicol by cmlA (n = 3) and ampicillin (n = 1). This is, to the best of our knowledge, the first report on antimicrobial resistance-transferring bacteriophages that have been isolated at equine veterinary clinics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA