Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951962

RESUMO

Thermoresponsive microgels experience a volume phase transition triggered by temperature changes, a phenomenon often analyzed using dynamic light scattering to observe overall size alterations via the diffusion coefficient. However, local structural changes are typically assessed using more intricate and expensive techniques like small-angle neutron or X-ray scattering. In our research, we investigate the volume phase transition of poly-N-isopropylacrylamide (PNIPAM)-based microgels by employing a combination of temperature-dependent dynamic light scattering and simpler, faster, and more efficient attenuation measurements. We utilize attenuation at a fixed wavelength as a direct measure of dispersion turbidity, linking the absolute changes in hydrodynamic radius to the absolute changes in turbidity. This approach allows us to compare "classical" PNIPAM microgels from precipitation polymerization, charged copolymer microgels from precipitation copolymerization, and core-shell microgels from seeded precipitation polymerization. Our study includes a systematic analysis and comparison of 30 different microgels. By directly comparing data from dynamic light scattering and attenuation spectroscopy, we gain insights into structural heterogeneity and deviations from the established fuzzy sphere morphology. Furthermore, we demonstrate how turbidity data can be converted to swelling curves.

2.
Langmuir ; 38(19): 6148-6157, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35502848

RESUMO

Over the last decade, the interest in carbon dots, graphene dots, or similar carbon-based nanoparticles has increased considerably. This interest is based on potentially high fluorescent quantum yields, controllable excitation-dependent emission, low toxicity, and convenient reaction conditions. Carbon dots are often seen as a promising alternative to classical semiconductor quantum dots that are typically made from toxic semiconductor materials. Surprisingly, aspects like the atomic structure, composition, mechanism of formation, and precise understanding of the photophysical properties of carbon dots are still mostly unknown. The large number of different precursor systems and the variety in synthesis routes make a direct comparison of different systems difficult. To advance this, we went for a systematic approach and compared the results of four synthesis routes using two different precursor systems. We used different spectroscopy and microscopy methods including fluorescence correlation spectroscopy to characterize the different reaction products. We found that for syntheses solely based on citric acid as the precursor, we obtain particles where the emission wavelength is strongly dependent on the excitation wavelength despite relatively low quantum yields. In comparison, when urea is added as a nitrogen doping reactant, we observe vastly increased quantum yields. By making use of a combination of dialysis and column chromatography, we were able to isolate various luminescent species with high quantum yields and verify the existence of different molecular fluorophores. A detailed and consistent characterization of the reaction products during the course of purification revealed strong interactions between molecular fluorophores and larger reaction products.

3.
Soft Matter ; 18(4): 807-825, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34939641

RESUMO

Thermoresponsive microgels undergo a volume phase transition from a swollen state under good solvent conditions to a collapsed state under poor solvent conditions. The most prominent examples of such responsive systems are based on poly-(N-isopropylacrylamide). When cross-linked with N,N'-methylenebisacrylamide, such microgels typically possess a fuzzy-spherelike morphology with a higher cross-linked core and a loosely cross-linked fuzzy shell. Despite the efforts devoted to understanding the internal structure of microgels and their kinetics during collapse/swelling, the origins of the accompanying changes in light scattering intensity have barely been addressed. In this work, we study core-shell microgels that contain small gold nanoparticle cores with microgel shells of different thicknesses and cross-linker densities. All microgels are small enough to fulfill the Rayleigh-Debye-Gans criterion at all stages of swelling. Due to the high X-ray contrast of the gold cores, we can use absolute intensity small-angle X-ray scattering to determine the number density in the dilute dispersions. This allows us to extract polymer volume fractions of the microgels at different stages of swelling from form factor analysis of small-angle neutron scattering data. We match our findings to results from temperature-dependent absorbance measurements. The increase in absorbance during the shrinkage of the microgels is related to the transition from fuzzy spheres to hard sphere-like scattering objects with a rather homogeneous density profile. We provide a first attempt to model experimental spectra using finite difference time domain simulations that take into account the structural changes during the volume phase transition. Our findings significantly contribute to the understanding of the optical properties of thermoresponsive microgels. Further, we provide polymer volume fractions and microgel refractive indices as a function of the swelling state.

4.
Soft Matter ; 17(15): 4019-4026, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33690774

RESUMO

Probing the rotational and translational diffusion and colloidal stability of nanorods is of significant fundamental interest with implications for many different applications. Recently R. Nixon-Luke and G. Bryant presented a method to analyze angle-dependent depolarized dynamic light scattering data allowing for the clear separation of the translational and rotational diffusion coefficients of gold nanorods in dilute suspension (R. Nixon-Luke and G. Bryant, Part. Part. Syst. Charact., 2018, 36, 1800388). In the present work we applied this analysis to gold nanorods decorated with high molecular weight, thermoresponsive poly-N-isopropylacrylamide ligands, which results in particles with lower effective aspect ratios. The temperature response of the ligand shell is studied. We precisely determine the translational and rotational diffusion coefficients over a broad range of temperatures and the results are compared to theoretical predictions. The results show that as temperature increases the ligands collapse, and the effective aspect ratio increases as the particle shape transitions from prolate spheroid at low temperatures to more cylindrical at high temperatures.

5.
ACS Appl Mater Interfaces ; 11(30): 26674-26683, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31282142

RESUMO

The synthesis of carbohydrate-functionalized thermosensitive poly(N-isopropylacrylamide) microgels and their ability to bind carbohydrate-binding pathogens upon temperature switch are reported. It is found that the microgels' binding affinity is increased above their lower critical solution temperature (LCST), enabling thermo-triggerable capture of pathogens. Here, a series of microgels with comparatively low mannose functionalization degrees below 1 mol % is achieved by a single polymerization step. Upon increase in mannose density, the microgel size increases, and the LCST decreases to 26 °C. Clustering with concanavalin A indicated that binding affinity is enhanced by a higher mannose content and by raising the temperature above the LCST. Binding studies with Escherichia coli confirm stronger specific interactions above the LCST and formation of mechanically stable aggregates enabling efficient separation of E. coli by filtration. For small incubation times above the LCST, the microgels' potential to release pathogens again below the LCST is confirmed also. Compared to existing switchable scaffolds, microgels nearly entirely composed of a thermosensitive material undergo a large change in volume, which allows them to drastically vary the density of ligands to switch between capture and release. This straightforward yet novel approach is likely compatible with a broad range of bioactive ligands. Therefore, thermosensitive microgels represent a promising platform for the specific capture or release of cells or pathogens.


Assuntos
Resinas Acrílicas/farmacologia , Carboidratos/química , Escherichia coli/efeitos dos fármacos , Microgéis/química , Acrilamidas/química , Acrilamidas/farmacologia , Resinas Acrílicas/química , Carboidratos/farmacologia , Ligantes , Polímeros/química , Polímeros/farmacologia , Ligação Proteica/efeitos dos fármacos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA