Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(7): e0219790, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31306458

RESUMO

Bioengineered spider silk is a biomaterial that has exquisite mechanical properties, biocompatibility, and biodegradability. Iron oxide nanoparticles can be applied for the detection and analysis of biomolecules, target drug delivery, as MRI contrast agents and as therapeutic agents for hyperthermia-based cancer treatments. In this study, we investigated three bioengineered silks, MS1, MS2 and EMS2, and their potential to form a composite material with magnetic iron oxide nanoparticles (IONPs). The presence of IONPs did not impede the self-assembly properties of MS1, MS2, and EMS2 silks, and spheres formed. The EMS2 spheres had the highest content of IONPs, and the presence of magnetite IONPs in these carriers was confirmed by several methods such as SEM, EDXS, SQUID, MIP-OES and zeta potential measurement. The interaction of EMS2 and IONPs did not modify the superparamagnetic properties of the IONPs, but it influenced the secondary structure of the spheres. The composite particles exhibited a more than two-fold higher loading efficiency for doxorubicin than the plain EMS2 spheres. For both the EMS2 and EMS2/IONP spheres, the drug revealed a pH-dependent release profile with advantageous kinetics for carriers made of the composite material. The composite spheres can be potentially applied for a combined cancer treatment via hyperthermia and drug delivery.


Assuntos
Compostos Férricos/química , Nanopartículas Metálicas/química , Engenharia de Proteínas/métodos , Seda , Nanomedicina Teranóstica/instrumentação , Nanomedicina Teranóstica/métodos , Animais , Materiais Biocompatíveis , Meios de Contraste , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Hipertermia Induzida/instrumentação , Nanopartículas de Magnetita/química , Camundongos , Células NIH 3T3 , Estrutura Secundária de Proteína , Aranhas
2.
Small ; 7(21): 3096-100, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21916008

RESUMO

The transmission of light through a metallic film stack on a transparent substrate, perforated with a periodic array of cylindrical holes/nanocavities, is studied. The structure is fabricated by using self-assembled nanosphere lithography. Since one layer in the film stack is made of a ferromagnetic metal (iron), exposure of the structure to a solution containing iron oxide nanoparticles causes nanoparticle accumulation inside the nanocavities. This changes the dielectric constant inside the nanocavities and thus affects the light transmission. Simulations are in good agreement with experiment, and show large sensitivity of the response to the amount of iron oxide nanoparticles deposited. This could be used in various sensor applications.


Assuntos
Compostos Férricos/química , Luz , Nanopartículas Metálicas/química , Magnetismo , Microscopia Eletrônica de Varredura , Ressonância de Plasmônio de Superfície
3.
Langmuir ; 24(17): 9855-60, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18652498

RESUMO

Gold nanoparticles are very interesting because of their potential applications in microelectronics, optical devices, analytical detection schemes, and biomedicine. Though shape control has been achieved in several polar solvents, the capability to prepare organosols containing elongated gold nanoparticles has been very limited. In this work we report a novel, simplified method to produce long, thin gold nanowires in an organic solvent (oleylamine), which can be readily redispersed into nonpolar organic solvents. These wires have a characteristic flexible, hairy morphology arising from a small thickness (<2 nm) and an enormous length (up to several micrometers), with the possibility of adjusting the dimensions through modification of the growth conditions, in particular, the gold salt concentration. Despite their extreme aspect ratio, the wires are stable in solution for long periods of time but easily break when irradiated with high-energy electron beams during transmission electron microscopy.

4.
J Phys Chem B ; 110(26): 12901-4, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16805589

RESUMO

A novel strategy for the fabrication of multiwall carbon nanotube-nanocrystal heterostructures is shown. Different quantum dots (QDs) with narrow size distributions were covalently coupled to carbon nanotubes (CNTs) and silica-coated CNTs in a simple, uniform, and controllable manner. The structural and optical properties of CNT/QD heterostructures are characterized by electron microscopy and photoluminescence spectroscopy. Complete quenching of the PL bands in both QD core and core/shell heterostructures was observed after adsorption to the CNTs, presumably through either carrier ionization or energy transfer. The deposition of a silica shell around the CNTs preserves the fluorescence properties by insulating the QD from the surface of the CNT.

5.
Chemphyschem ; 6(12): 2522-6, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16270368

RESUMO

The magnetic properties of nanoparticles can be subject to strong variations as the chemical composition of the particle surface is modified. To study this interrelation of surface chemistry and magnetism, self-assembled layers of colloidal 9.5 nm Co/CoO core/shell nanoparticles were exposed to mild reactive hydrogen and oxygen plasmas. The consecutive oxygen/hydrogen plasma treatment transforms the particle layer into an array of metallic nanomagnets with complete reduction of the oxide and removal of the organic surfactants. The original arrangement of the particle array and the number of Co atoms per particle remains unchanged within the experimental error, and thus this is a possible route for the fabrication of ultrahigh-density magnetic bit structures from colloidal dispersions. The magnetic properties can be tuned by controlling the thickness of the surface oxide layer, which magnetically hardens the particles, as evidenced by element-specific magnetic hysteresis loops.

6.
Anal Sci ; 21(10): 1227-32, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16270584

RESUMO

The adsorption of cobalt nanoparticles on a carbon microfiber surface has been electrochemicaly detected. The redox processes observed in an electrochemical cell filled with redistilled water and equipped with the carbon fiber microelectrode modified by cobalt nanoparticles have been compared to those observed in an aqueous solution of Co2+ cations. The movement of the adsorbed nanoparticles has been demonstrated by the feedback capacitance-potential method.


Assuntos
Carbono/química , Cobalto/química , Nanoestruturas/química , Adsorção , Fibra de Carbono , Cobalto/metabolismo , Eletroquímica , Oxirredução , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA