RESUMO
Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques. R21 adjuvanted with 3M on a 0, 8, and 23-week schedule elicited anti-circumsporozoite antibody responses comparable in magnitude to the R21/MM vaccine administered using a 0-4-8-week regimen and persisted up to 72 weeks with a half-life of 337 days. A booster dose at 72 weeks induced a recall response similar to the R21/MM vaccination. In contrast, R21/GLA-LSQ immunization induced a lower, short-lived response at the dose used. Consistent with the durable serum antibody responses, MM and 3M induced long-lived plasma cells in the bone marrow and other tissues, including the spleen. Furthermore, whereas 3M stimulated potent and persistent antiviral transcriptional and cytokine signatures after primary and booster immunizations, MM induced enhanced expression of interferon- and TH2-related signatures more highly after the booster vaccination. Collectively, these findings provide a resource on the immune responses of three clinically relevant adjuvants with R21 and highlight the promise of 3M as another adjuvant for malarial vaccines.
Assuntos
Adjuvantes Imunológicos , Vacinas Antimaláricas , Animais , Vacinas Antimaláricas/imunologia , Adjuvantes Imunológicos/farmacologia , Macaca mulatta , Adjuvantes de Vacinas , Anticorpos Antiprotozoários/imunologia , Citocinas/metabolismoRESUMO
How human genetic variation contributes to vaccine effectiveness in infants is unclear, and data are limited on these relationships in populations with African ancestries. We undertook genetic analyses of vaccine antibody responses in infants from Uganda (n = 1391), Burkina Faso (n = 353) and South Africa (n = 755), identifying associations between human leukocyte antigen (HLA) and antibody response for five of eight tested antigens spanning pertussis, diphtheria and hepatitis B vaccines. In addition, through HLA typing 1,702 individuals from 11 populations of African ancestry derived predominantly from the 1000 Genomes Project, we constructed an imputation resource, fine-mapping class II HLA-DR and DQ associations explaining up to 10% of antibody response variance in our infant cohorts. We observed differences in the genetic architecture of pertussis antibody response between the cohorts with African ancestries and an independent cohort with European ancestry, but found no in silico evidence of differences in HLA peptide binding affinity or breadth. Using immune cell expression quantitative trait loci datasets derived from African-ancestry samples from the 1000 Genomes Project, we found evidence of differential HLA-DRB1 expression correlating with inferred protection from pertussis following vaccination. This work suggests that HLA-DRB1 expression may play a role in vaccine response and should be considered alongside peptide selection to improve vaccine design.
Assuntos
Cadeias HLA-DRB1 , Feminino , Humanos , Lactente , Masculino , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , População Negra/genética , Vacinas contra Hepatite B/imunologia , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Vacina contra Coqueluche/imunologia , Vacina contra Coqueluche/genética , Locos de Características Quantitativas , Uganda , Vacinação , Coqueluche/prevenção & controle , Coqueluche/imunologia , Coqueluche/genética , Burkina Faso , África do Sul , População Africana , População EuropeiaRESUMO
BACKGROUND: Recently, we found that a new malaria vaccine, R21/Matrix-M, had over 75% efficacy against clinical malaria with seasonal administration in a phase 2b trial in Burkina Faso. Here, we report on safety and efficacy of the vaccine in a phase 3 trial enrolling over 4800 children across four countries followed for up to 18 months at seasonal sites and 12 months at standard sites. METHODS: We did a double-blind, randomised, phase 3 trial of the R21/Matrix-M malaria vaccine across five sites in four African countries with differing malaria transmission intensities and seasonality. Children (aged 5-36 months) were enrolled and randomly assigned (2:1) to receive 5 µg R21 plus 50 µg Matrix-M or a control vaccine (licensed rabies vaccine [Abhayrab]). Participants, their families, investigators, laboratory teams, and the local study team were masked to treatment. Vaccines were administered as three doses, 4 weeks apart, with a booster administered 12 months after the third dose. Half of the children were recruited at two sites with seasonal malaria transmission and the remainder at standard sites with perennial malaria transmission using age-based immunisation. The primary objective was protective efficacy of R21/Matrix-M from 14 days after third vaccination to 12 months after completion of the primary series at seasonal and standard sites separately as co-primary endpoints. Vaccine efficacy against multiple malaria episodes and severe malaria, as well as safety and immunogenicity, were also assessed. This trial is registered on ClinicalTrials.gov, NCT04704830, and is ongoing. FINDINGS: From April 26, 2021, to Jan 12, 2022, 5477 children consented to be screened, of whom 1705 were randomly assigned to control vaccine and 3434 to R21/Matrix-M; 4878 participants received the first dose of vaccine. 3103 participants in the R21/Matrix-M group and 1541 participants in the control group were included in the modified per-protocol analysis (2412 [51·9%] male and 2232 [48·1%] female). R21/Matrix-M vaccine was well tolerated, with injection site pain (301 [18·6%] of 1615 participants) and fever (754 [46·7%] of 1615 participants) as the most frequent adverse events. Number of adverse events of special interest and serious adverse events did not significantly differ between the vaccine groups. There were no treatment-related deaths. 12-month vaccine efficacy was 75% (95% CI 71-79; p<0·0001) at the seasonal sites and 68% (61-74; p<0·0001) at the standard sites for time to first clinical malaria episode. Similarly, vaccine efficacy against multiple clinical malaria episodes was 75% (71-78; p<0·0001) at the seasonal sites and 67% (59-73; p<0·0001) at standard sites. A modest reduction in vaccine efficacy was observed over the first 12 months of follow-up, of similar size at seasonal and standard sites. A rate reduction of 868 (95% CI 762-974) cases per 1000 children-years at seasonal sites and 296 (231-362) at standard sites occurred over 12 months. Vaccine-induced antibodies against the conserved central Asn-Ala-Asn-Pro (NANP) repeat sequence of circumsporozoite protein correlated with vaccine efficacy. Higher NANP-specific antibody titres were observed in the 5-17 month age group compared with 18-36 month age group, and the younger age group had the highest 12-month vaccine efficacy on time to first clinical malaria episode at seasonal (79% [95% CI 73-84]; p<0·001) and standard (75% [65-83]; p<0·001) sites. INTERPRETATION: R21/Matrix-M was well tolerated and offered high efficacy against clinical malaria in African children. This low-cost, high-efficacy vaccine is already licensed by several African countries, and recently received a WHO policy recommendation and prequalification, offering large-scale supply to help reduce the great burden of malaria in sub-Saharan Africa. FUNDING: The Serum Institute of India, the Wellcome Trust, the UK National Institute for Health Research Oxford Biomedical Research Centre, and Open Philanthropy.
Assuntos
Vacinas Antimaláricas , Malária , Nanopartículas , Saponinas , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anticorpos Antivirais , Burkina Faso , Método Duplo-Cego , Imunização , Malária/tratamento farmacológico , Vacinas Antimaláricas/efeitos adversosRESUMO
Many vaccines, including those using recombinant antigen subunits, rely on adjuvant(s) to enhance the efficacy of the host immune responses. Among the few adjuvants clinically approved, QS-21, a saponin-based immunomodulatory molecule isolated from the tree bark of Quillaja saponaria (QS) is used in complex formulations in approved effective vaccines. High demand of the QS raw material as well as manufacturing scalability limitation has been barriers here. We report for the first-time successful plant cell culture production of QS-21 having structural, chemical, and biologic, properties similar to the bark extracted product. These data ensure QS-21 and related saponins are broadly available and accessible to drug developers.
RESUMO
BACKGROUND: The R21/Matrix-M vaccine has demonstrated high efficacy against Plasmodium falciparum clinical malaria in children in sub-Saharan Africa. Using trial data, we aimed to estimate the public health impact and cost-effectiveness of vaccine introduction across sub-Saharan Africa. METHODS: We fitted a semi-mechanistic model of the relationship between anti-circumsporozoite protein antibody titres and vaccine efficacy to data from 3 years of follow-up in the phase 2b trial of R21/Matrix-M in Nanoro, Burkina Faso. We validated the model by comparing predicted vaccine efficacy to that observed over 12-18 months in the phase 3 trial. Integrating this framework within a mathematical transmission model, we estimated the cases, malaria deaths, and disability-adjusted life-years (DALYs) averted and cost-effectiveness over a 15-year time horizon across a range of transmission settings in sub-Saharan Africa. Cost-effectiveness was estimated incorporating the cost of vaccine introduction (dose, consumables, and delivery) relative to existing interventions at baseline. We report estimates at a median of 20% parasite prevalence in children aged 2-10 years (PfPR2-10) and ranges from 3% to 65% PfPR2-10. FINDINGS: Anti-circumsporozoite protein antibody titres were found to satisfy the criteria for a surrogate of protection for vaccine efficacy against clinical malaria. Age-based implementation of a four-dose regimen of R21/Matrix-M vaccine was estimated to avert 181â825 (range 38â815-333â491) clinical cases per 100â000 fully vaccinated children in perennial settings and 202â017 (29â868-405â702) clinical cases per 100â000 fully vaccinated children in seasonal settings. Similar estimates were obtained for seasonal or hybrid implementation. Under an assumed vaccine dose price of US$3, the incremental cost per clinical case averted was $7 (range 4-48) in perennial settings and $6 (3-63) in seasonal settings and the incremental cost per DALY averted was $34 (29-139) in perennial settings and $30 (22-172) in seasonal settings, with lower cost-effectiveness ratios in settings with higher PfPR2-10. INTERPRETATION: Introduction of the R21/Matrix-M malaria vaccine could have a substantial public health benefit across sub-Saharan Africa. FUNDING: The Wellcome Trust, the Bill & Melinda Gates Foundation, the UK Medical Research Council, the European and Developing Countries Clinical Trials Partnership 2 and 3, the NIHR Oxford Biomedical Research Centre, and the Serum Institute of India, Open Philanthropy.
Assuntos
Análise Custo-Benefício , Vacinas Antimaláricas , Malária Falciparum , Modelos Teóricos , Saúde Pública , Humanos , Vacinas Antimaláricas/economia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Malária Falciparum/economia , Burkina Faso/epidemiologia , Pré-Escolar , Saúde Pública/economia , Plasmodium falciparum/imunologia , Criança , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Eficácia de Vacinas , Lactente , Masculino , FemininoRESUMO
Infectious agents contribute significantly to the global burden of diseases through both acute infection and their chronic sequelae. We leveraged the UK Biobank to identify genetic loci that influence humoral immune response to multiple infections. From 45 genome-wide association studies in 9,611 participants from UK Biobank, we identified NFKB1 as a locus associated with quantitative antibody responses to multiple pathogens, including those from the herpes, retro-, and polyoma-virus families. An insertion-deletion variant thought to affect NFKB1 expression (rs28362491), was mapped as the likely causal variant and could play a key role in regulation of the immune response. Using 121 infection- and inflammation-related traits in 487,297 UK Biobank participants, we show that the deletion allele was associated with an increased risk of infection from diverse pathogens but had a protective effect against allergic disease. We propose that altered expression of NFKB1, as a result of the deletion, modulates hematopoietic pathways and likely impacts cell survival, antibody production, and inflammation. Taken together, we show that disruptions to the tightly regulated immune processes may tip the balance between exacerbated immune responses and allergy, or increased risk of infection and impaired resolution of inflammation.
Assuntos
Predisposição Genética para Doença , Hipersensibilidade , Inflamação , Humanos , Estudo de Associação Genômica Ampla , Hipersensibilidade/genética , Inflamação/genética , Subunidade p50 de NF-kappa B/genética , Biobanco do Reino UnidoRESUMO
The heritability of susceptibility to tuberculosis (TB) disease has been well recognized. Over 100 genes have been studied as candidates for TB susceptibility, and several variants were identified by genome-wide association studies (GWAS), but few replicate. We established the International Tuberculosis Host Genetics Consortium to perform a multi-ancestry meta-analysis of GWAS, including 14,153 cases and 19,536 controls of African, Asian, and European ancestry. Our analyses demonstrate a substantial degree of heritability (pooled polygenic h2 = 26.3%, 95% CI 23.7-29.0%) for susceptibility to TB that is shared across ancestries, highlighting an important host genetic influence on disease. We identified one global host genetic correlate for TB at genome-wide significance (p<5 × 10-8) in the human leukocyte antigen (HLA)-II region (rs28383206, p-value=5.2 × 10-9) but failed to replicate variants previously associated with TB susceptibility. These data demonstrate the complex shared genetic architecture of susceptibility to TB and the importance of large-scale GWAS analysis across multiple ancestries experiencing different levels of infection pressure.
Assuntos
Predisposição Genética para Doença , Tuberculose , Humanos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Tuberculose/genética , Grupos Raciais/genéticaRESUMO
Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.
Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Lipossomos , Células Th1 , Emulsões , Adjuvantes Imunológicos/farmacologia , Malária/prevenção & controleRESUMO
Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.
Assuntos
Bancos de Espécimes Biológicos , Genética Médica , Genoma Humano , Genômica , Hispânico ou Latino , Humanos , Glicemia/genética , Glicemia/metabolismo , Estatura/genética , Índice de Massa Corporal , Interação Gene-Ambiente , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/classificação , Hispânico ou Latino/genética , Homozigoto , México , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/genética , Reino Unido , Genoma Humano/genéticaRESUMO
BACKGROUND: Rift Valley fever is a viral epidemic illness prevalent in Africa that can be fatal or result in debilitating sequelae in humans. No vaccines are available for human use. We aimed to evaluate the safety and immunogenicity of a non-replicating simian adenovirus-vectored Rift Valley fever (ChAdOx1 RVF) vaccine in humans. METHODS: We conducted a phase 1, first-in-human, open-label, dose-escalation trial in healthy adults aged 18-50 years at the Centre for Clinical Vaccinology and Tropical Medicine, Oxford, UK. Participants were required to have no serious comorbidities or previous history of receiving an adenovirus-based vaccine before enrolment. Participants were non-randomly allocated to receive a single ChAdOx1 RVF dose of either 5 × 109 virus particles (vp), 2·5 × 1010 vp, or 5 × 1010 vp administered intramuscularly into the deltoid of their non-dominant arm; enrolment was sequential and administration was staggered to allow for safety to be assessed before progression to the next dose. Primary outcome measures were assessment of adverse events and secondary outcome measures were Rift Valley fever neutralising antibody titres, Rift Valley fever GnGc-binding antibody titres (ELISA), and cellular response (ELISpot), analysed in all participants who received a vaccine. This trial is registered with ClinicalTrials.gov (NCT04754776). FINDINGS: Between June 11, 2021, and Jan 13, 2022, 15 volunteers received a single dose of either 5 × 109 vp (n=3), 2·5 × 1010 vp (n=6), or 5 × 1010 vp (n=6) ChAdOx1 RVF. Nine participants were female and six were male. 14 (93%) of 15 participants reported solicited local adverse reactions; injection-site pain was the most frequent (13 [87%] of 15). Ten (67%) of 15 participants (from the 2·5 × 1010 vp and 5 × 1010 vp groups only) reported systemic symptoms, which were mostly mild in intensity, the most common being headache (nine [60%] of 15) and fatigue (seven [47%]). All unsolicited adverse events reported within 28 days were either mild or moderate in severity; gastrointestinal symptoms were the most common reaction (at least possibly related to vaccination), occurring in four (27%) of 15 participants. Transient decreases in total white cell, lymphocyte, or neutrophil counts occurred at day 2 in some participants in the intermediate-dose and high-dose groups. Lymphopenia graded as severe occurred in two participants in the 5 × 1010 vp group at a single timepoint, but resolved at the subsequent follow-up visit. No serious adverse events occurred. Rift Valley fever neutralising antibodies were detectable across all dose groups, with all participants in the 5 × 1010 vp dose group having high neutralising antibody titres that peaked at day 28 after vaccination and persisted through the 3-month follow-up. High titres of binding IgG targeting Gc glycoprotein were detected whereas those targeting Gn were comparatively low. IFNγ cellular responses against Rift Valley fever Gn and Gc glycoproteins were observed in all participants except one in the 5 × 1010 vp dose group. These IFNγ responses peaked at 2 weeks after vaccination, were highest in the 5 × 1010 vp dose group, and tended to be more frequent against the Gn glycoprotein. INTERPRETATION: ChAdOx1 RVF was safe, well tolerated, and immunogenic when administered as a single dose in this study population. The data support further clinical development of ChAdOx1 RVF for human use. FUNDING: UK Department of Health and Social Care through the UK Vaccines Network, Oak Foundation, and the Wellcome Trust. TRANSLATION: For the Swahili translation of the abstract see Supplementary Materials section.
Assuntos
Febre do Vale de Rift , Vacinas Virais , Humanos , Adulto , Masculino , Feminino , Animais , Febre do Vale de Rift/prevenção & controle , Anticorpos Neutralizantes , Glicoproteínas , Reino Unido , Imunogenicidade da Vacina , Anticorpos Antivirais , Método Duplo-CegoRESUMO
Diversity in specificity of polyclonal antibody (pAb) responses is extensively investigated in vaccine efficacy or immunological evaluations, but the heterogeneity in antibody avidity is rarely probed as convenient tools are lacking. Here we have developed a polyclonal antibodies avidity resolution tool (PAART) for use with label-free techniques, such as surface plasmon resonance and biolayer interferometry, that can monitor pAb-antigen interactions in real time to measure dissociation rate constant (kd ) for defining avidity. PAART utilizes a sum of exponentials model to fit the dissociation time-courses of pAb-antigens interactions and resolve multiple kd contributing to the overall dissociation. Each kd value of pAb dissociation resolved by PAART corresponds to a group of antibodies with similar avidity. PAART is designed to identify the minimum number of exponentials required to explain the dissociation course and guards against overfitting of data by parsimony selection of best model using Akaike information criterion. Validation of PAART was performed using binary mixtures of monoclonal antibodies of same specificity but differing in kd of the interaction with their epitope. We applied PAART to examine the heterogeneity in avidities of pAb from malaria and typhoid vaccinees, and individuals living with HIV-1 that naturally control the viral load. In many cases, two to three kd were dissected indicating the heterogeneity of pAb avidities. We showcase examples of affinity maturation of vaccine induced pAb responses at component level and enhanced resolution of heterogeneity in avidity when antigen-binding fragments (Fab) are used instead of polyclonal IgG antibodies. The utility of PAART can be manifold in examining circulating pAb characteristics and could inform vaccine strategies aimed to guide the host humoral immune response.
Assuntos
Anticorpos Monoclonais , Imunidade Humoral , Humanos , Afinidade de Anticorpos , EpitoposRESUMO
BACKGROUND: People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. METHODS: Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. FINDINGS: In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. CONCLUSIONS: In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs).
Assuntos
COVID-19 , Infecções por HIV , Adulto , Humanos , HIV , ChAdOx1 nCoV-19 , Vacina BNT162 , SARS-CoV-2 , COVID-19/prevenção & controle , Ativação Linfocitária , Vacinação , Infecções por HIV/tratamento farmacológico , Imunoglobulina G , Anticorpos AntiviraisRESUMO
Background: Falciparum malaria remains a global health problem. Two vaccines, based on the circumsporozoite antigen, are available. RTS, S/AS01 was recommended for use in 2021 following the advice of the World Health Organisation (WHO) Strategic Advisory Group of Experts (SAGE) on Immunization and WHO Malaria Policy Advisory Group (MPAG). It has since been pre-qualified in 2022 by the WHO. R21 is similar to RTS, S/AS01, and recently licensed in Nigeria, Ghana and Burkina Faso following Phase 3 trial results. Methods: We conducted a Phase 1b age de-escalation, dose escalation bridging study after a change in the manufacturing process for R21. We recruited healthy adults and children and used a three dose primary vaccination series with a booster dose at 1-2 years. Variable doses of R21 and adjuvant (Matrix-M ™) were administered at 10µgR21/50 µg Matrix-M™, 5µgR21/25µg Matrix-M™ and 5µgR21/50µg Matrix-M™ to 20 adults, 20 children, and 51 infants. Results: Self-limiting adverse events were reported relating to the injection site and mild systemic symptoms. Two serious adverse events were reported, neither linked to vaccination. High levels of IgG antibodies to the circumsporozoite antigen were induced, and geometric mean titres in infants, the target group, were 1.1 (0.9 to 1.3) EU/mL at day 0, 10175 (7724 to 13404) EU/mL at day 84 and (following a booster dose at day 421) 6792 (5310 to 8687) EU/mL at day 456. Conclusion: R21/Matrix-M™ is safe, and immunogenic when given at varied doses with the peak immune response seen in infants 28 days after a three dose primary vaccination series given four weeks apart. Antibody responses were restored 28 days after a 4 th dose given one year post a three dose primary series in the young children and infants. Registration: Clinicaltrials.gov (NCT03580824; 9 th of July 2018; Pan African Clinical Trials Registry (PACTR202105682956280; 17 th May 2021).
RESUMO
The experimental malaria vaccine ChAd63 MVA ME-TRAP previously showed protective efficacy against Plasmodium falciparum infection in Phase IIa sporozoite challenge studies in adults in the United Kingdom and in a Phase IIb field efficacy trial in Kenyan adults. However, it failed to demonstrate efficacy in a phase IIb trial in 5-17 month-old children in an area of high malaria transmission in Burkina Faso. This secondary analysis investigated whether exposure to malaria or nutritional status might be associated with reduced responses to vaccination in this cohort. Parasite blood smears and anti-AMA-1 IgG titres were used to assess history of exposure to malaria and weight-for-length Z scores were calculated to assess nutritional status. Differences in vaccine-specific anti-TRAP IgG titre and ex vivo IFNγ ELISpot response were measured between groups. In total, n = 336 volunteers randomised to receive the experimental vaccine regimen were included in this analysis. A positive smear microscopy result was associated with reduced anti-TRAP IgG titre (geometric mean titre: 2775 (uninfected) vs 1968 (infected), p = 0.025), whilst anti-AMA-1 IgG titres were weakly negatively correlated with reduced ex vivo IFNγ ELISpot response (r = -0.18, p = 0.008). Nutritional status was not associated with either humoral or cellular immunogenicity. Vaccine efficacy was also measured separately for vaccinees with positive and negative blood smears. Although not significant in either group compared to controls, vaccine efficacy measured by Cox hazard ratio was higher in uninfected compared to infected individuals (19.8% [p = 0.50] vs 3.3% [p = 0.69]). Overall, this data suggests exposure to malaria may be associated with impaired vaccine immunogenicity. This may have consequences for the testing and eventual deployment of various vaccines, in areas with high endemicity for malaria. Trial Registration: Pactr.org, identifier PACTR201208000404131; ClinicalTrials.gov, identifier NCT01635647.
Assuntos
Vacinas Antimaláricas , Malária , Adulto , Criança , Humanos , Lactente , Burkina Faso , Imunoglobulina G , Quênia , Malária/prevenção & controle , Vaccinia virusRESUMO
BACKGROUND: Intranasal vaccination may induce protective local and systemic immune responses against respiratory pathogens. A number of intranasal SARS-CoV-2 vaccine candidates have achieved protection in pre-clinical challenge models, including ChAdOx1 nCoV-19 (AZD1222, University of Oxford / AstraZeneca). METHODS: We performed a single-centre open-label Phase I clinical trial of intranasal vaccination with ChAdOx1 nCoV-19 in healthy adults, using the existing formulation produced for intramuscular administration. Thirty SARS-CoV-2 vaccine-naïve participants were allocated to receive 5 × 109 viral particles (VP, n=6), 2 × 1010 VP (n=12), or 5 × 1010 VP (n=12). Fourteen received second intranasal doses 28 days later. A further 12 received non-study intramuscular mRNA SARS-CoV-2 vaccination between study days 22 and 46. To investigate intranasal ChAdOx1 nCoV-19 as a booster, six participants who had previously received two intramuscular doses of ChAdOx1 nCoV-19 and six who had received two intramuscular doses of BNT162b2 (Pfizer / BioNTech) were given a single intranasal dose of 5 × 1010 VP of ChAdOx1 nCoV-19. Objectives were to assess safety (primary) and mucosal antibody responses (secondary). FINDINGS: Reactogenicity was mild or moderate. Antigen-specific mucosal antibody responses to intranasal vaccination were detectable in a minority of participants, rarely exceeding levels seen after SARS-CoV-2 infection. Systemic responses to intranasal vaccination were typically weaker than after intramuscular vaccination with ChAdOx1 nCoV-19. Antigen-specific mucosal antibody was detectable in participants who received an intramuscular mRNA vaccine after intranasal vaccination. Seven participants developed symptomatic SARS-CoV-2 infection. INTERPRETATION: This formulation of intranasal ChAdOx1 nCoV-19 showed an acceptable tolerability profile but induced neither a consistent mucosal antibody response nor a strong systemic response. FUNDING: AstraZeneca.
Assuntos
COVID-19 , Vacinas Virais , Adulto , Humanos , Adenoviridae/genética , Anticorpos Antivirais , Vacina BNT162 , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Vacinação/efeitos adversos , Vacinas de mRNARESUMO
Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.
Assuntos
Doenças Inflamatórias Intestinais , Hanseníase , Humanos , Criança , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Malaui , Mali , Hanseníase/genética , Proteínas de Transporte de Nucleosídeos/genéticaRESUMO
BACKGROUND: Malaria is a leading cause of morbidity and mortality worldwide. We previously reported the efficacy of the R21/Matrix-M malaria vaccine, which reached the WHO-specified goal of 75% or greater efficacy over 12 months in the target population of African children. Here, we report the safety, immunogenicity, and efficacy results at 12 months following administration of a booster vaccination. METHODS: This double-blind phase 1/2b randomised controlled trial was done in children aged 5-17 months in Nanoro, Burkina Faso. Eligible children were enrolled and randomly assigned (1:1:1) to receive three vaccinations of either 5 µg R21/25 µg Matrix-M, 5 µg R21/50 µg Matrix-M, or a control vaccine (the Rabivax-S rabies vaccine) before the malaria season, with a booster dose 12 months later. Children were eligible for inclusion if written informed consent could be provided by a parent or guardian. Exclusion criteria included any existing clinically significant comorbidity or receipt of other investigational products. A random allocation list was generated by an independent statistician by use of block randomisation with variable block sizes. A research assistant from the University of Oxford, independent of the trial team, prepared sealed envelopes using this list, which was then provided to the study pharmacists to assign participants. All vaccines were prepared by the study pharmacists by use of the same type of syringe, and the contents were covered with an opaque label. Vaccine safety, efficacy, and a potential correlate of efficacy with immunogenicity, measured as anti-NANP antibody titres, were evaluated over 1 year following the first booster vaccination. The population in which the efficacy analyses were done comprised all participants who received the primary series of vaccinations and a booster vaccination. Participants were excluded from the efficacy analysis if they withdrew from the trial within the first 2 weeks of receiving the booster vaccine. This trial is registered with ClinicalTrials.gov (NCT03896724), and is continuing for a further 2 years to assess both the potential value of additional booster vaccine doses and longer-term safety. FINDINGS: Between June 2, and July 2, 2020, 409 children returned to receive a booster vaccine. Each child received the same vaccination for the booster as they received in the primary series of vaccinations; 132 participants received 5 µg R21 adjuvanted with 25 µg Matrix-M, 137 received 5 µg R21 adjuvanted with 50 µg Matrix-M, and 140 received the control vaccine. R21/Matrix-M had a favourable safety profile and was well tolerated. Vaccine efficacy remained high in the high adjuvant dose (50 µg) group, similar to previous findings at 1 year after the primary series of vaccinations. Following the booster vaccination, 67 (51%) of 132 children who received R21/Matrix-M with low-dose adjuvant, 54 (39%) of 137 children who received R21/Matrix-M with high-dose adjuvant, and 121 (86%) of 140 children who received the rabies vaccine developed clinical malaria by 12 months. Vaccine efficacy was 71% (95% CI 60 to 78) in the low-dose adjuvant group and 80% (72 to 85) in the high-dose adjuvant group. In the high-dose adjuvant group, vaccine efficacy against multiple episodes of malaria was 78% (95% CI 71 to 83), and 2285 (95% CI 1911 to 2568) cases of malaria were averted per 1000 child-years at risk among vaccinated children in the second year of follow-up. Among these participants, at 28 days following their last R21/Matrix-M vaccination, titres of malaria-specific anti-NANP antibodies correlated positively with protection against malaria in both the first year of follow-up (Spearman's ρ -0·32 [95% CI -0·45 to -0·19]; p=0·0001) and second year of follow-up (-0·20 [-0·34 to -0·06]; p=0·02). INTERPRETATION: A booster dose of R21/Matrix-M at 1 year following the primary three-dose regimen maintained high efficacy against first and multiple episodes of clinical malaria. Furthermore, the booster vaccine induced antibody concentrations that correlated with vaccine efficacy. The trial is ongoing to assess long-term follow-up of these participants and the value of further booster vaccinations. FUNDING: European and Developing Countries Clinical Trials Partnership 2 (EDCTP2), Wellcome Trust, and NIHR Oxford Biomedical Research Centre. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.
Assuntos
Malária , Vacina Antirrábica , Humanos , Burkina Faso , Seguimentos , Método Duplo-Cego , Adjuvantes Imunológicos , Imunogenicidade da VacinaRESUMO
Traditional chemical adjuvants remain a practical means of enhancing the immunogenicity of vaccines. Nevertheless, it is recognized that increasing the immunogenicity of viral vectors is challenging. Recently, STING ligands have been shown to enhance the efficacy of different vaccine platforms, but their affectivity on viral-vectored vaccination has not been fully assessed. In this study we used a multi-pronged approach to shed light on the immunological properties and potential mechanisms of action of this type of adjuvant and focused our study on replication-deficient human adenovirus serotype 5 (AdHu5). When the STING ligand 2'3'-cGAMP was mixed with AdHu5, the adjuvant enhanced anti-vector immune responses while decreasing the transgene-specific CD8+ T cell response. Studies employing STING-knockout mice and a 2'3'-cGAMP inactive analogue confirmed the aforementioned effects were STING dependent. In vitro assays demonstrated 2'3'-cGAMP induced the production of IFN-ß which in turn negatively affected AdHu5 transgene expression and CD8+ T cell immunogenicity. In an effort to overcome the negative impact of early 2'3'-cGAMP signaling on AdHu5 transgene immunogenicity, we generated a bicistronic vector encoding the 2'3'-cGAMP together with a model antigen. Intracellular production of 2'3'-cGAMP after AdHu5 infection was able to enhance transgene-specific CD8+ T cell immunogenicity, although not to a level that would warrant progression of this adjuvant to clinical assessment. This work highlights the importance of timing of 2'3'-cGAMP administration when assessing its adjuvant capacity with different vaccine modalities.
Assuntos
Adenovírus Humanos , Vacinas Virais , Adenovírus Humanos/genética , Adjuvantes Imunológicos , Animais , Linfócitos T CD8-Positivos , Vetores Genéticos/genética , Humanos , Camundongos , Vacinação , Vacinas Virais/genéticaRESUMO
Virus-like particles (VLPs) induce strong humoral and cellular responses and have formed the basis of some currently licensed vaccines. Here, we present the method used for the production of R21, a VLP-based anti-sporozoite malaria vaccine, under current Clinical Good Manufacturing Practice regulations (cGMP). Previous preclinical studies in BALB/c mice showed that R21 produced almost complete protection against sporozoite challenge with transgenic Plasmodium berghei parasites. Here, we have modified the preclinical production process to enable the production of sufficient quantities of highly pure, clinical-grade material for use in human clinical trials. The R21 construct was re-engineered to include a C-tag to allow affinity-based separation from the major contaminant alcohol oxidase 1 (AOX 1, ~74 kDa). To our knowledge, this is the first use of C-tag technology to purify a VLP vaccine candidate for use in human clinical trials. The R21 vaccine has shown high-level efficacy in an African Phase IIb trial, and multiple clinical trials are underway to assess the safety and efficacy of the vaccine. Our findings support the future use of C-tag platform technologies to enable cGMP-compliant biomanufacturing of high purity yeast-expressed VLP-based vaccines for early phase clinical trials when clinical grade material is required in smaller quantities in a quick time frame.
Assuntos
Vacinas Antimaláricas , Malária , Saccharomycetales , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Humanos , Malária/prevenção & controle , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Pichia/genéticaRESUMO
Invasive bacterial disease is a major cause of morbidity and mortality in African children. Despite being caused by diverse pathogens, children with sepsis are clinically indistinguishable from one another. In spite of this, most genetic susceptibility loci for invasive infection that have been discovered to date are pathogen specific and are not therefore suggestive of a shared genetic architecture of bacterial sepsis. Here, we utilise probabilistic diagnostic models to identify children with a high probability of invasive bacterial disease among critically unwell Kenyan children with Plasmodium falciparum parasitaemia. We construct a joint dataset including 1445 bacteraemia cases and 1143 severe malaria cases, and population controls, among critically unwell Kenyan children that have previously been genotyped for human genetic variation. Using these data, we perform a cross-trait genome-wide association study of invasive bacterial infection, weighting cases according to their probability of bacterial disease. In doing so, we identify and validate a novel risk locus for invasive infection secondary to multiple bacterial pathogens, that has no apparent effect on malaria risk. The locus identified modifies splicing of BIRC6 in stimulated monocytes, implicating regulation of apoptosis and autophagy in the pathogenesis of sepsis in Kenyan children.
Bacterial infections are a major cause of severe illness and death in African children. Understanding which children are at risk of life-threatening infection and why, is key to designing new tools to help protect them. Some risk is likely inherited, but scientists do not know which genes are responsible. Genome-wide association studies (GWAS) may be one way to identify bacterial infection risk genes. GWAS look for genetic differences associated with a particular disease. But previous GWAS studies have failed to find genes linked with bacterial infections in African children because they were too small. Malaria is another frequent cause of life-threatening illness in African children. It can be hard for clinicians to determine if a child's illness is caused by malaria, a bacterial infection, or both. Many children in Africa have malaria parasites in their blood, but they do not always cause disease. Most children with suspected severe malaria are treated with antibiotics in case of bacterial infection. Clinicians may then conduct further testing to determine the illness's actual cause. Scientists may be able to use this data on children with suspected malaria to study bacterial infections. Gilchrist et al. show that children with an unusual alteration in the BIRC6 gene are at increased risk of bacterial infections. In the experiments, Gilchrist et al. used computer modeling to identify a subset of children with likely bacterial infections among 2,200 children admitted to a hospital in Kenya with a high fever and malaria parasites. By combining information on this subset of children with data on children with confirmed bacterial infections and healthy children, Gilchrist created a sample of 5,400 children for a GWAS. The analyses found that children with a variation in the BIRC6 gene on chromosome 2 had a higher risk of bacterial infections. This genetic change is linked with the production of a modified form of BIRC6 in infection-fighting immune cells called monocytes. More studies will help scientists understand how this change might contribute to severe bacterial infections. Learning more may help scientists develop new treatment strategies and identify children most at risk.