Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 73: 61-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312859

RESUMO

Fungal pathogens need regulated mechanical and morphological fine-tuning for pushing through substrates to meet their metabolic and functional needs. Currently very little is understood on how coordinated colony level morphomechanical modifications regulate their behavior. This is due to an absence of a method that can simultaneously map, quantify, and correlate global fluctuations in physical properties of the expanding fungal colonies. Here, we show that three-dimensional ultrasonic reflections upon decoding can render acoustic contrast tomographs that contain information on material property and morphology in the same time scale of one important phytopathogen, Aspergillus parasiticus, at multiple length scales. By quantitative analysis of the changes in acoustic signatures collected as the A. parasiticus colony expands with time, we further demonstrate that the pathogen displays unique acoustic signatures during synthesis and release of its hepatocarcinogenic secondary metabolite, aflatoxin, suggesting an involvement of a multiscale morphomechanical reorganization of the colony in this process. Our studies illustrate for the first time, the feasibility of generating in any invading cell population, four-dimensional maps of global physical properties, with minimal physical perturbation of the specimens. Our developed method that we term quantitative acoustic contrast tomography (Q-ACT), provides a novel diagnostic framework for the identification of in-cell molecular factors and discovery of small molecules that may modulate pathogen invasion in a host.


Assuntos
Aflatoxinas/biossíntese , Aspergillus/fisiologia , Ultrassonografia/métodos , Aspergillus/ultraestrutura , Metabolismo Secundário/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA