Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ochsner J ; 24(1): 47-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510216

RESUMO

Background: Adhesive capsulitis, also known as frozen shoulder, is a challenge to treat clinically. Common first-line treatment options are suprascapular nerve block (SSNB), intra-articular corticosteroid (IACS) injection, hydrodilatation, and physical therapy. This literature review summarizes each of these conservative treatments and discusses the evidence base for combining treatment options for potential additive benefits to improve patient outcomes (ie, pain, range of motion [ROM], and shoulder function). Methods: The PubMed and Google Scholar databases were searched using the search terms "adhesive capsulitis," "frozen shoulder," "corticosteroids," "physical therapy," "suprascapular nerve block," "hydrodilatation," and "conservative care." Pertinent articles were identified and synthesized to provide a comprehensive review of 4 common conservative treatments for adhesive capsulitis. Results: Combining SSNB with physical therapy and/or IACS injection and combining IACS injection with physical therapy have support in the literature for improving shoulder pain, ROM, and function, while hydrodilatation and physical therapy seem to offer some additive benefits for improving shoulder ROM when used as adjunct treatments for adhesive capsulitis. Conclusion: Adhesive capsulitis remains a challenge to treat clinically with much still unknown regarding treatment optimization. For the foreseeable future, first-line conservative management will continue to be the mainstay of managing adhesive capsulitis. Thus, knowing how to best use and optimize these various options-both individually and in combination-is vital for effective treatment.

2.
Nat Commun ; 15(1): 1581, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383524

RESUMO

The high potential of siRNAs to silence oncogenic drivers remains largely untapped due to the challenges of tumor cell delivery. Here, divalent lipid-conjugated siRNAs are optimized for in situ binding to albumin to improve pharmacokinetics and tumor delivery. Systematic variation of the siRNA conjugate structure reveals that the location of the linker branching site dictates tendency toward albumin association versus self-assembly, while the lipid hydrophobicity and reversibility of albumin binding also contribute to siRNA intracellular delivery. The lead structure increases tumor siRNA accumulation 12-fold in orthotopic triple negative breast cancer (TNBC) tumors over the parent siRNA. This structure achieves approximately 80% silencing of the anti-apoptotic oncogene MCL1 and yields better survival outcomes in three TNBC models than an MCL-1 small molecule inhibitor. These studies provide new structure-function insights on siRNA-lipid conjugate structures that are intravenously injected, associate in situ with serum albumin, and improve pharmacokinetics and tumor treatment efficacy.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , RNA Interferente Pequeno , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Inativação Gênica , Lipídeos/química , Albuminas/genética
3.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824780

RESUMO

The high potential for therapeutic application of siRNAs to silence traditionally undruggable oncogenic drivers remains largely untapped due to the challenges of tumor cell delivery. Here, siRNAs were optimized for in situ binding to albumin through C18 lipid modifications to improve pharmacokinetics and tumor delivery. Systematic variation of siRNA conjugates revealed a lead structure with divalent C18 lipids each linked through three repeats of hexaethylene glycol connected by phosphorothioate bonds. Importantly, we discovered that locating the branch site of the divalent lipid structure proximally (adjacent to the RNA) rather than at a more distal site (after the linker segment) promotes association with albumin, while minimizing self-assembly and lipoprotein association. Comparison to higher albumin affinity (diacid) lipid variants and siRNA directly conjugated to albumin underscored the importance of conjugate hydrophobicity and reversibility of albumin binding for siRNA delivery and bioactivity in tumors. The lead conjugate increased tumor siRNA accumulation 12-fold in orthotopic mouse models of triple negative breast cancer over the parent siRNA. When applied for silencing of the anti-apoptotic oncogene MCL-1, this structure achieved approximately 80% MCL1 silencing in orthotopic breast tumors. Furthermore, application of the lead conjugate structure to target MCL1 yielded better survival outcomes in three independent, orthotopic, triple negative breast cancer models than an MCL1 small molecule inhibitor. These studies provide new structure-function insights on optimally leveraging siRNA-lipid conjugate structures that associate in situ with plasma albumin for molecular-targeted cancer therapy.

4.
ACS Nano ; 14(1): 311-327, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31894963

RESUMO

Breast cancer patients are at high risk for bone metastasis. Metastatic bone disease is a major clinical problem that leads to a reduction in mobility, increased risk of pathologic fracture, severe bone pain, and other skeletal-related events. The transcription factor Gli2 drives expression of parathyroid hormone-related protein (PTHrP), which activates osteoclast-mediated bone destruction, and previous studies showed that Gli2 genetic repression in bone-metastatic tumor cells significantly reduces tumor-induced bone destruction. Small molecule inhibitors of Gli2 have been identified; however, the lipophilicity and poor pharmacokinetic profile of these compounds have precluded their success in vivo. In this study, we designed a bone-targeted nanoparticle (BTNP) comprising an amphiphilic diblock copolymer of poly[(propylene sulfide)-block-(alendronate acrylamide-co-N,N-dimethylacrylamide)] [PPS-b-P(Aln-co-DMA)] to encapsulate and preferentially deliver a small molecule Gli2 inhibitor, GANT58, to bone-associated tumors. The mol % of the bisphosphonate Aln in the hydrophilic polymer block was varied in order to optimize BTNP targeting to tumor-associated bone by a combination of nonspecific tumor accumulation (presumably through the enhanced permeation and retention effect) and active bone binding. Although 100% functionalization with Aln created BTNPs with strong bone binding, these BTNPs had highly negative zeta-potential, resulting in shorter circulation time, greater liver uptake, and less distribution to metastatic tumors in bone. However, 10 mol % of Aln in the hydrophilic block generated a formulation with a favorable balance of systemic pharmacokinetics and bone binding, providing the highest bone/liver biodistribution ratio among formulations tested. In an intracardiac tumor cell injection model of breast cancer bone metastasis, treatment with the lead candidate GANT58-BTNP formulation decreased tumor-associated bone lesion area 3-fold and increased bone volume fraction in the tibiae of the mice 2.5-fold. Aln conferred bone targeting to the GANT58-BTNPs, which increased GANT58 concentration in the tumor-associated bone relative to untargeted NPs, and also provided benefit through the direct antiresorptive therapeutic function of Aln. The dual benefit of the Aln in the BTNPs was supported by the observations that drug-free Aln-containing BTNPs improved bone volume fraction in bone-tumor-bearing mice, while GANT58-BTNPs created better therapeutic outcomes than both unloaded BTNPs and GANT58-loaded untargeted NPs. These findings suggest GANT58-BTNPs have potential to potently inhibit tumor-driven osteoclast activation and resultant bone destruction in patients with bone-associated tumor metastases.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Nanopartículas/química , Polímeros/farmacologia , Piridinas/farmacologia , Tiofenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Óptica , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Piridinas/química , Propriedades de Superfície , Tiofenos/química , Microtomografia por Raio-X
5.
Semin Oncol Nurs ; 31(2): 146-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25951743

RESUMO

OBJECTIVES: To review the rationale for endocrine therapy in the neoadjuvant, adjuvant, and metastatic breast cancer setting and to highlight clinical considerations unique to this treatment. DATA SOURCES: Contemporary literature, clinical guidelines, and national statistics. CONCLUSION: Endocrine therapy represents an important strategy in the management of both early and advanced hormone positive breast cancer. Additional research is required to better define the role of neoadjuvant therapy and the optimal duration of treatment. IMPLICATIONS FOR NURSING PRACTICE: Nurses play a pivotal role in the identification and management of endocrine therapy-associated symptoms. Prompt symptom intervention may improve therapy adherence and ultimately, may improve long-term disease outcomes.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enfermagem , Quimioterapia Adjuvante/enfermagem , Enfermagem Oncológica/métodos , Tamoxifeno/uso terapêutico , Sistema Endócrino/efeitos dos fármacos , Feminino , Humanos , Metástase Neoplásica/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA