Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 14(8): 2146-2157, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38822092

RESUMO

While long-acting injectable treatments are gaining increasing interest in managing chronic diseases, the available drug delivery systems almost exclusively rely on hydrophobic matrixes, limiting their application to either hydrophobic drugs or large and hydrophilic molecules such as peptides. To address the technological lock for long-acting delivery systems tailored to small, hydrophilic drugs such as anticancer and antiviral nucleoside/nucleotide analogues, we have synthesized and characterized an original approach with a multi-scale structure: (i) a nucleotide (adenosine triphosphate, ATP) is first incorporated in hydrophilic chitosan-Fe(III) nanogels; (ii) these nanogels are then transferred by freeze-drying and resuspension into a water-free, hydrophobic medium containing PLGA and an organic solvent, N-methyl-2-pyrrolidone. We show that this specific association allows an injectable and homogeneous dispersion, able to form in situ implants upon injection in physiological or aqueous environments. This system releases ATP in vitro without any burst effect in a two-step mechanism, first as nanogels acting as an intermediate reservoir over a week, then as free drug over several weeks. In vivo studies confirmed the potential of such nanostructured implants for sustained drug release following subcutaneous injection to mice hock, opening perspectives for sustained and targeted delivery through the lymphatic system.


Assuntos
Trifosfato de Adenosina , Quitosana , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas , Animais , Trifosfato de Adenosina/administração & dosagem , Quitosana/química , Quitosana/administração & dosagem , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Liberação Controlada de Fármacos , Camundongos , Preparações de Ação Retardada/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sistemas de Liberação de Medicamentos , Implantes de Medicamento , Injeções Subcutâneas , Nanogéis/química , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem , Pirrolidinonas
2.
Int J Pharm ; 650: 123491, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37806508

RESUMO

The development of novel cell-based therapies has increased the necessity to improve the long-term storage of cells. The current method of cryopreservation is far from optimal, causing ice-associated mechanical and osmotic damage to sensitive cells. Cell encapsulation is emerging as a new strategy to overcome those current limitations; however, few data are applicable to slow freezing, with conflicting results and multiple experimental conditions. The objective of this research work was to evaluate the impact of capsule size and encapsulation method on cell survival and functionality after a conventional freezing protocol. To this end, cells were encapsulated in alginate beads of different sizes, spanning the range of 200-2000 µm thanks to multiple extrusion techniques and conditions, and further cryopreserved using a slow cooling rate (-1°C/min) and 10 % DMSO as cryoprotectant. Our data show that there is a strong correlation between bead size and cell survival after a slow cooling cryopreservation process, with cell viabilities ranging from 7 to 70 % depending on the capsule size, with the smallest capsules (230 µm) achieving the highest level of survival. The obtained results indicate that the beads' diameter, rather than their morphology or the technique used, plays a significant role in the post-thawing cell survival and functionality. These results show that a fine control of cell encapsulation in alginate hydrogels is required when it comes to overcoming the current limitations of long-term preservation techniques by slow cooling.


Assuntos
Dimetil Sulfóxido , Hidrogéis , Sobrevivência Celular , Criopreservação/métodos , Crioprotetores/farmacologia , Alginatos , Macrófagos
4.
Adv Mater ; 35(13): e2209615, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36649533

RESUMO

Pulmonary exposure to some engineered nanomaterials can cause chronic lesions as a result of unresolved inflammation. Among 2D nanomaterials and graphene, MoS2 has received tremendous attention in optoelectronics and nanomedicine. Here an integrated approach is proposed to follow up the transformation of MoS2 nanosheets at the nanoscale and assesss their impact on lung inflammation status over 1 month after a single inhalation in mice. Analysis of immune cells, alveolar macrophages, extracellular vesicles, and cytokine profiling in bronchoalveolar lavage fluid (BALF) shows that MoS2 nanosheets induced initiation of lung inflammation. However, the inflammation is rapidly resolved despite the persistence of various biotransformed molybdenum-based nanostructures in the alveolar macrophages and the extracellular vesicles for up to 1 month. Using in situ liquid phase transmission electron microscopy experiments, the dynamics of MoS2 nanosheets transformation triggered by reactive oxygen species could be evidenced. Three main transformation mechanisms are observed directly at the nanoscale level: 1) scrolling of the dispersed sheets leading to the formation of nanoscrolls and folded patches, 2) etching releasing soluble MoO4 - , and 3) oxidation generating oxidized sheet fragments. Extracellular vesicles released in BALF are also identified as a potential shuttle of MoS2 nanostructures and their degradation products and more importantly as mediators of inflammation resolution.


Assuntos
Vesículas Extracelulares , Pneumonia , Animais , Camundongos , Molibdênio/química , Dissulfetos/química , Inflamação/induzido quimicamente
5.
Int J Pharm ; 626: 122131, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36028084

RESUMO

A common approach to tackle the poor intestinal membrane permeability of peptides after oral administration is to formulate them with a permeation enhancer (PE). Increased oral bioavailability for oral peptide candidates has been reported from clinical trials when either salcaprozate sodium (SNAC) or sodium caprate (C10) is incorporated in the formulation. However, little is known about how they physically interact with peptides in solution. Our objective was to compare the biophysical interactions between the GLP-1 analogue exenatide (Byetta®, Lilly), and C10 or SNAC using a variety of advanced analytical techniques. First, critical micelle concentration was measured in different buffers for both PEs. Dynamic light scattering (DLS) measurements revealed specific supramolecular structures arising from exenatide-PE association. Surface plasmon resonance (SPR) indicated the formation of exenatide-PE complexes with a high contribution from non-specific interactions and rapid binding kinetics, resulting in overall low affinities. DLS and isothermal titration calorimetry (ITC) were used to examine the supramolecular organization of the PEs, and revealed thermodynamic signatures characterized by unfavourable enthalpic contributions compensated by favourable entropic ones, but with low-affinity estimates in water (KD in the 10-100 µM range). With affinity capillary electrophoresis (ACE), weak interactions between exenatide and SNAC or C10 were confirmed in saline, with a dissociation constant around 10 µM and 30 µM respectively. In biorelevant intestinal media, the bile salts in FaSSIF and FeSSIF further reduced the binding of both agents to exenatide (KD ≈ 100 µM), indicating that the interaction between the PEs and exenatide might be inhibited by bile salts in the GI lumen. This study suggests that the interactions of both PEs with exenatide follow a similar non-covalent mechanism and are of low affinity.


Assuntos
Absorção Intestinal , Micelas , Ácidos e Sais Biliares , Caprilatos , Ácidos Decanoicos , Exenatida , Peptídeo 1 Semelhante ao Glucagon , Peptídeos , Água
6.
Int J Pharm ; 610: 121213, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34678397

RESUMO

(R)-CE3F4, a specific inhibitor of EPAC1 (exchange protein directly activated by cAMP type 1), has been demonstrated in vitro and in vivo to reduce hypertrophic signaling contributing to heart failure or to control arrhythmia and has shown promise as a drug candidate. However, (R)-CE3F4 exhibits poor solubility in aqueous media and has shown sensitivity to enzyme hydrolysis in plasma. To overcome these issues, the drug was entrapped in liposomes and lipid nanocapsules. Both systems considerably increased the drug apparent solubility in aqueous media. Among these nanocarriers, lipid nanocapsules offered significant protection in vitro against enzymatic degradation by increasing the (R)-CE3F4 apparent half-life from around 40 min to 6 h. Pharmacokinetics and biodistribution of (R)-CE3F4 radiolabeled or not were studied in healthy C57BL/6 mice. The non-encapsulated 3H-CE3F4 showed a very rapid distribution outside the blood compartment. Similar results were observed when using nanocarriers together with a fast dissociation of 3H-CE3F4 from nanocapsules simultaneously labeled with 14C. Thus, essential preclinical information on CE3F4 fate has been obtained, as well as the impact of its formulation using lipid-based nanocarriers.


Assuntos
Nanocápsulas , Animais , Lipídeos , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual
7.
Artigo em Inglês | MEDLINE | ID: mdl-34666890

RESUMO

The CE3F4 is an inhibitor of the type 1 exchange protein directly activated by cAMP (EPAC1), which is involved in numerous signaling pathways. The inhibition of EPAC1 shows promising results in vitro and in vivo in different cardiac pathological situations like hypertrophic signaling, contributing to heart failure, or arrhythmia. An HPLC-UV method with a simple and fast sample treatment allowed the quantification of (R)-CE3F4. Sample treatment consisted of simple protein precipitation with 50 µL of ethanol and 150 µL of acetonitrile for a 50 µL biological sample. Two wavelengths were used according to the origin of plasma (220 or 250 nm for human samples and 250 nm for murine samples). Accuracy profile was evaluated for both wavelengths, and the method was in agreement with the criteria given by the EMA in the guideline for bioanalytical method validation for human and mouse plasma samples. The run time was 12 min allowing the detection of the (R)-CE3F4 and a metabolite. This study further permitted understanding the behavior of CE3F4 in plasma by highlighting an important difference between humans and rodents on plasma metabolism and may impact future in vivo studies related to this molecule and translation of results between animal models and humans. Using paraoxon as a metabolism inhibitor was crucial for the stabilization of (R)-CE3F4 in murine samples. HPLC-UV and HPLC-MS/MS studies were conducted to confirm metabolite structure and consequently, the main metabolic pathway in murine plasma.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Quinolinas/sangue , Quinolinas/química , Animais , Coleta de Amostras Sanguíneas , Humanos , Limite de Detecção , Modelos Lineares , Camundongos , Paraoxon/química , Reprodutibilidade dos Testes
8.
Pharmaceutics ; 13(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477667

RESUMO

Oral lichen planus (OLP) is an ongoing and chronic inflammatory disease affecting the mucous membrane of the oral cavity. Currently, the treatment of choice consists in the direct application into the buccal cavity of semisolid formulations containing a corticosteroid molecule to decrease inflammatory signs and symptoms. However, this administration route has shown various disadvantages limiting its clinical use and efficacy. Indeed, the frequency of application and the incorrect use of the preparation may lead to a poor efficacy and limit the treatment compliance. Furthermore, the saliva clearance and the mechanical stress present in the buccal cavity also involve a decrease in the mucosal exposure to the drug. In this context, the design of a new pharmaceutical formulation, containing a steroidal anti-inflammatory, mucoadhesive, sprayable and exhibiting a sustained and controlled release seems to be suitable to overcome the main limitations of the existing pharmaceutical dosage forms. The present work reports the formulation, optimization and evaluation of the mucoadhesive and release properties of a poloxamer 407 thermosensitive hydrogel containing a poorly water-soluble corticosteroid, dexamethasone acetate (DMA), threaded into hydroxypropyl-beta-cyclodextrin (HP-ß-CD) molecules. Firstly, physicochemical properties were assessed to ensure suitable complexation of DMA into HP-ß-CD cavities. Then, rheological properties, in the presence and absence of various mucoadhesive agents, were determined and optimized. The hydration ratio (0.218-0.191), the poloxamer 407 (15-17 wt%) percentage and liquid-cyclodextrin state were optimized as a function of the gelation transition temperature, viscoelastic behavior and dynamic flow viscosity. Deformation and resistance properties were evaluated in the presence of various mucoadhesive compounds, being the sodium alginate and xanthan gum the most suitable to improve adhesion and mucoadhesion properties. Xanthan gum was shown as the best agent prolonging the hydrogel retention time up to 45 min. Furthermore, xanthan gum has been found as a relevant polymer matrix controlling drug release by diffusion and swelling processes in order to achieve therapeutic concentration for prolonged periods of time.

9.
Nanoscale ; 12(4): 2452-2463, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31915784

RESUMO

The understanding of the cellular uptake and the intracellular fate of nanoparticles and their subsequent influence on cell viability is challenging as far as micelles are concerned. Such systems are dynamic by nature, existing as unimers under their critical micelle concentration (CMC), and as micelles in equilibrium with unimers above the CMC, making canonical dose-response relationships difficult to establish. The purpose of this study was to investigate the in vitro cytotoxicity and uptake of two micellar sytems that are relevant for drug delivery. The two micelles incorporate a poly(ethylene glycol) coating and a pentacosadiynoic core which is either polymerized (pDA-PEG micelles) or non-polymerized (DA-PEG micelles), with the aim of evaluating the influence of the micelles status ("particle-like" or "dynamic", respectively) on their toxicological profile. Intracellular distribution and cytotoxicity of polymerized and non-polymerized micelles were investigated on RAW 264.7 macrophages in order to compare any different interactions with cells. Non-polymerized micelles showed significantly higher cytotoxicity than polymerized micelles, especially in terms of cell permeabilization, correlated to a higher accumulation in cell membranes. Other potential toxicity endpoints of polymerized micelles were then thoroughly studied in order to assess possible responses resulting from their endocytosis. No specific mechanisms of cytotoxicity were observed, neither in terms of apoptosis induction, cell membrane damage, release of inflammatory mediators nor genotoxicity. These data indicate that non-polymerized micelles accumulate in the cell membrane and induce cell membrane permeabilization, resulting in significant toxicity, whereas polymerized, stable micelles are internalized by cells but exert no or very low toxicity.


Assuntos
Micelas , Polímero Poliacetilênico/toxicidade , Animais , Apoptose , Portadores de Fármacos , Endocitose , Inflamação , L-Lactato Desidrogenase/metabolismo , Lipopolissacarídeos , Camundongos , Mitocôndrias/metabolismo , Nanopartículas/química , Nanopartículas/toxicidade , Nanoestruturas , Necrose , Permeabilidade , Polímero Poliacetilênico/química , Polietilenoglicóis/química , Polimerização , Células RAW 264.7
11.
Adv Drug Deliv Rev ; 134: 122-137, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30267743

RESUMO

Aptamers are versatile nucleic acid-based macromolecules characterized by their high affinity and specificity to a specific target. Taking advantage of such binding properties, several aptamers have been selected to bind tumor biomarkers and have been used as targeting ligands for the functionalization of nanomedicines. Different functionalization methods have been used to link aptamers to the surface drug nanocarriers. The pre-clinical data of such nanomedicines overall show an enhanced and selective delivery of therapeutic payloads to cancer cells, thereby accelerating steps towards more effective therapeutic systems. This review describes the current advances in the use of aptamers as targeting moieties for the delivery of therapeutic and imaging agents to tumors by conjugation to organic and inorganic nanocarriers.


Assuntos
Antineoplásicos/uso terapêutico , Aptâmeros de Nucleotídeos/química , Sistemas de Liberação de Medicamentos , Nanomedicina , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Humanos , Ligantes , Nanopartículas/química , Neoplasias/patologia
12.
J Control Release ; 271: 98-106, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29277682

RESUMO

In this study, we describe a liposome-based siRNA delivery system with a core composed of siRNA:protamine complex and a shell designed for the active targeting of CD44-expressing cells using for the first time the anti-CD44 aptamer (named Apt1) as targeting ligand. Among all functions, CD44 is the most common cancer stem cell surface biomarker and is found overexpressed in many tumors making this an attractive receptor for therapeutic targeting. This unique non-cationic system was evaluated for the silencing of the reporter gene of luciferase (luc2) in a triple-negative breast cancer model in vitro and in vivo. We show the possibility of conjugating an aptamer to siRNA-containing liposomes for an efficient gene silencing in CD44-expressing tumor cells in vivo, in the perspective of silencing disease-related genes in tumors.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Biomarcadores Tumorais/genética , Receptores de Hialuronatos/genética , RNA Interferente Pequeno/administração & dosagem , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Humanos , Lipossomos , Luciferases/genética , Camundongos , Nanomedicina , Neoplasias de Mama Triplo Negativas/terapia
13.
Int J Pharm ; 525(1): 203-210, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28438698

RESUMO

Aiming at improving the nebulization performances and lung antioxidant protection of curcumin, chitosan or hyaluronan-coated liposomes were prepared and their characteristics and performances were compared with that of uncoated liposomes. Curcumin loaded liposomes displayed a diameter lower than 100nm, the coating with both polymers led to a small increase of vesicle size around 130nm and the zeta potential turned to positive values using chitosan while remained negative using hyaluronan. Chitosan allowed the formation of more lamellar and stiffer vesicles with a higher bilayer thickness (dB∼59Ǻ) with respect to the uncoated liposomes, whereas hyaluronan allowed the interdigitation of the bilayers (dB∼47Ǻ) due to the polymer intercalation between phospholipid head groups resulting in vesicles mainly organized in uncorrelated bilayers. Both polymer coatings, especially hyaluronan, greatly improved the stability of the vesicles, especially during the nebulization process, promoting the deposition of the phytodrug in the furthest stages of the impactor in high amount (≥50%). Polymer coated vesicles were biocompatible and improved the curcumin ability to protect A549 cells from the oxidative stress induced by hydrogen peroxide, restoring healthy conditions (cell relative metabolic activity 100%). In particular, a synergic effect of curcumin and hyaluronan was observed resulting in a proliferative effect and a subsequent further enhancement of cell relative metabolic activity up to 120%.


Assuntos
Quitosana/química , Curcumina/administração & dosagem , Portadores de Fármacos/química , Ácido Hialurônico/química , Lipossomos/química , Células A549 , Humanos , Pulmão/efeitos dos fármacos , Polímeros
14.
Mol Pharm ; 13(12): 4168-4178, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934478

RESUMO

Surfactant protein A (SP-A), a lung anti-infective protein, is a lectin with affinity for sugars found on fungal and micrococcal surfaces such as mannose. We synthesized a mannosylated poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) copolymer and used it to produce nanoparticles with a polyester (PLGA/PLA) core and a PEG shell decorated with mannose residues, designed to be strongly associated with SP-A for an increased uptake by alveolar macrophages. Nanoparticles made of the copolymers were obtained by nanoprecipitation and displayed a size of around 140 nm. The presence of mannose on the surface was demonstrated by zeta potential changes according to pH and by a strong aggregation in the presence of concanavalin A. Mannosylated nanoparticles bound to SP-A as demonstrated by dynamic light scattering and transmission electron microscopy. The association with SP-A increased nanoparticle uptake by THP-1 macrophages in vitro. In vivo experiments demonstrated that after intratracheal administration of nanoparticles with or without SP-A, SP-A-coated mannosylated nanoparticles were internalized by alveolar macrophages in greater proportion than SP-A-coated nonmannosylated nanoparticles. The data demonstrate for the first time that the pool of nanoparticles available to lung cells can be changed after surface modification, using a biomimetic approach.


Assuntos
Macrófagos Alveolares/metabolismo , Nanopartículas/química , Polímeros/química , Proteína A Associada a Surfactante Pulmonar/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Macrófagos Alveolares/citologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Propriedades de Superfície
15.
Int J Pharm ; 514(1): 103-111, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27863652

RESUMO

We have investigated the impact of hyaluronic acid (HA)-coating on the targeting capacity of siRNA lipoplexes to CD44-overexpressing tumor cells. Cellular uptake and localization of HA-lipoplexes were evaluated by flow cytometry and fluorescence microscopy and both methods showed that these lipoplexes were rapidly internalized and localized primarily within the cytoplasm. Inhibition of luciferase expression on the A549-luciferase lung cancer cell line was achieved in vitro using an anti-Luc siRNA. 81% of luciferase gene expression inhibition was obtained in vitro with HA-lipoplexes at +/- ratio 2. In vivo, in a murine A549 metastatic lung cancer model, the treatment with HA-lipoplexes carrying anti-luciferase siRNA led to a statistically significant decrease of luciferase expression as opposed to progressive increase with non-modified lipoplexes or NaCl 0.9%. The reduction of the expression of luciferase mRNA tumor of mice treated with HA-lipoplexes supported the inhibition effect due to siRNA. These results highlight the potential of HA-lipoplexes in CD44-targeting siRNA delivery.


Assuntos
Ácido Hialurônico/química , Lipossomos/química , Neoplasias Pulmonares/tratamento farmacológico , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Luciferases/metabolismo , Camundongos , RNA Mensageiro/metabolismo
16.
Nanomedicine (Lond) ; 11(14): 1865-87, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27389568

RESUMO

Extensive experimental evidence demonstrates the important role of hyaluronic acid (HA)-CD44 interaction in cell proliferation and migration, inflammation and tumor growth. Taking advantage of this interaction, the design of HA-modified nanocarriers has been investigated for targeting CD44-overexpressing cells with the purpose of delivering drugs to cancer or inflammatory cells. The effect of such modification on targeting efficacy is influenced by several factors. In this review, we focus on the impact of HA-modification on the characteristics of lipid-based nanoparticles. We try to understand how these modifications influence particle physicochemical properties, interaction with CD44 receptors, intracellular trafficking pathways, toxicity, complement/macrophage activation and pharmacokinetics. Our aim is to provide insight in tailoring particle modification by HA in order to design more efficient CD44-targeting lipid nanocarriers.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/análogos & derivados , Lipídeos/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Humanos , Ácido Hialurônico/metabolismo , Metabolismo dos Lipídeos , Lipossomos/metabolismo , Nanocápsulas/química , Neoplasias/metabolismo
17.
J Biomed Nanotechnol ; 12(1): 135-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27301179

RESUMO

The toxicity of polymeric biodegradable nanoparticles was evaluated on a co-culture made from direct contact of human lung alveolar epithelial cells (A459) and macrophages (differentiated THP-1 monocytes). The co-culture was characterized by its phenotype and by confocal laser scanning microscopy. Cytokine secretion induced by lipopolysaccharide was synergistically increased in the co-culture confirming cell-cell interactions. Poly(lactide-co-glycolide) (PLGA)-based nanoparticles of 200 nm were prepared in presence of hydrophilic polymers commonly used as stabilizers [poly(vinyl alcohol), chitosan and poloxamer 188] through their interaction with particle surface. Stabilizer-free PLGA nanoparticles and stabilizers alone were also evaluated as controls. Selective uptake kinetics of PLGA nanoparticles by cell subpopulations, as well as apoptosis/necrosis detection, was achieved using a specific label for each cell type, while cytokine secretions were quantified in culture supernatants. Both cell subpopulations took up PLGA nanoparticles with similar profiles, and induced only little cytotoxicity (mostly necrosis). A mild inflammatory response to stabilized nanoparticles was detected (compared to well-known inflammatory compounds), slightly higher than the one observed for stabilizer-free PLGA nanoparticles or stabilizing agents taken individually. These results demonstrate that although biodegradable nanoparticles can be considered as safe, they can internalize compounds such as the stabilizing agents which enhance their toxicity.


Assuntos
Células Epiteliais/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Ácido Láctico/toxicidade , Macrófagos/imunologia , Nanocápsulas/toxicidade , Ácido Poliglicólico/toxicidade , Implantes Absorvíveis , Linhagem Celular , Técnicas de Cocultura , Citocinas/imunologia , Células Epiteliais/efeitos dos fármacos , Humanos , Inflamação/patologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Nanocápsulas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície
18.
Nanotoxicology ; 10(3): 292-302, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26573338

RESUMO

To design nanoparticle (NP)-based drug delivery systems for pulmonary administration, biodegradable materials are considered safe, but their potential toxicity is poorly explored. We here explore the lung toxicity in mice of biodegradable nanoparticles (NPs) and compare it to the toxicity of non-biodegradable ones. NP formulations of poly(d,l-lactide-co-glycolide) (PLGA) coated with chitosan (CS), poloxamer 188 (PF68) or poly(vinyl alcohol) (PVA), which renders 200 nm NPs of positive, negative or neutral surface charge respectively, were analyzed for their biodistribution by in vivo fluorescence imaging and their inflammatory potential after single lung nebulization in mice. After exposure, analysis of bronchoalveolar lavage (BAL) cell population, protein secretion and cytokine release as well as lung histology were carried out. The inflammatory response was compared to the one induced by non-biodegradable counterparts, namely, TiO2 of rutile and anatase crystal form and polystyrene (PS). PLGA NPs were mostly present in mice lungs, with little passage to other organs. An increase in neutrophil recruitment was observed in mice exposed to PS NPs 24 h after nebulization, which declined at 48 h. This result was supported by an increase in interleukin (IL)-6 and tumor necrosis factor α (TNFα) in BAL supernatant at 24 h. TiO2 anatase NPs were still present in lung cells 48 h after nebulization and induced the expression of pro-inflammatory cytokines and the recruitment of polymorphonuclear cells to BAL. In contrast, regardless of their surface charge, PLGA NPs did not induce significant changes in the inflammation markers analyzed. In conclusion, these results point out to a safe use of PLGA NPs regardless of their surface coating compared to non-biodegradable ones.


Assuntos
Quitosana/toxicidade , Ácido Láctico/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Nanopartículas/toxicidade , Poloxâmero/toxicidade , Ácido Poliglicólico/toxicidade , Álcool de Polivinil/toxicidade , Administração por Inalação , Aerossóis/administração & dosagem , Aerossóis/farmacocinética , Aerossóis/toxicidade , Animais , Lavagem Broncoalveolar , Quitosana/química , Quitosana/farmacocinética , Mediadores da Inflamação/metabolismo , Ácido Láctico/química , Ácido Láctico/farmacocinética , Pulmão/patologia , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Poloxâmero/química , Poloxâmero/farmacocinética , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Poliestirenos/química , Poliestirenos/farmacocinética , Poliestirenos/toxicidade , Álcool de Polivinil/química , Álcool de Polivinil/farmacocinética , Distribuição Tecidual , Titânio/química , Titânio/toxicidade
19.
Langmuir ; 31(41): 11186-94, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26375384

RESUMO

The dynamics of the formation of siRNA-lipoplexes coated with hyaluronic acid (HA) and the parameters influencing their supramolecular organization were studied. The insertion of a HA-dioleylphosphatidylethanolamine (DOPE) conjugate in the liposome structure as well as subsequent complexation with siRNA increased the liposome size. Lipoplexes were around 110 nm at high ± charge ratios with a zeta potential around +50 mV and around 230 nm at low ± ratios, with a zeta potential that decreased to negative values, reaching -45 mV. The addition of the conjugate did not compromise siRNA binding to liposomes, although these nucleic acids induced a displacement of part of the HA-DOPE conjugate upon lipoplex formation, as confirmed by capillary electrophoresis. Isothermal titration calorimetry, X-ray diffraction studies, and cryo-TEM microscopy demonstrated that in addition to electrostatic interactions with siRNA a rearrangement of the lipid bilayers takes place, resulting in condensed oligolamellar vesicles. This phenomenon is dependent on the number of siRNA molecules and the degree of modification with HA. Finally, the suitable positioning of HA on the lipoplex surface and its ability to bind specifically to the CD44 receptors in a concentration-dependent manner was demonstrated by surface plasmon resonance analysis.


Assuntos
Sistemas de Liberação de Medicamentos , Receptores de Hialuronatos/química , Ácido Hialurônico/química , Bicamadas Lipídicas/química , RNA Interferente Pequeno/química , Sítios de Ligação , Humanos , Ressonância de Plasmônio de Superfície
20.
Eur J Pharm Sci ; 75: 40-53, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25937367

RESUMO

In the context of the treatment of HIV/AIDS, many improvements have been achieved since the introduction of the combination therapy (HAART). Nevertheless, no cure for this disease has been so far possible, because of some particular features of the therapies. Among them, two important ones have been selected and will be the subject of this review. The first main concern in the treatments is the poor drug bioavailability, resulting in repeated administrations and therefore a demanding compliance (drug regimens consist of multiple drugs daily intake, and non-adherence to therapy is among the important reasons for treatment failure). A second important challenge is the need to target the drugs into the so-called reservoirs and sanctuaries, i.e. cells or body compartments where drugs cannot penetrate or are distributed in sub-active concentrations. The lack of antiviral action in these regions allows the virus to lie latent and start to replicate at any moment after therapy suspension. Recent drug delivery strategies addressing these two limitations will be presented in this review. In the first part, strategies to improve the bioavailability are proposed in order to overcome the absorption or the target cell barrier, or to extend the efficacy time of drugs. In the second section, the biodistribution issues are considered in order to target the drugs into the reservoirs and the sanctuaries, in particular the mononuclear phagocyte system and the brain.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacocinética , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Infecções por HIV/metabolismo , Humanos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA