Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 397: 130467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373504

RESUMO

In this study, lab-scale, bench-scale, and pilot-scale experiments were carried out to optimize short-chain fatty acids production from primary sludge. Batch tests showed the requirement of short retention times and semi-continuous operation mode showed a plateau of maximum daily productivity at 36-hours hydraulic retention time with minimal methanation. Optimization from pH 5 to pH 10 at 36 h-hydraulic retention time under long-term semi-continuous operating mode revealed that production of short-chain fatty acids was pH dependent and highest yields could be achieved at pH 7 by establishing optimum redox conditions for fermentation. Pilot-scale experiments at 32 °C showed that daily productivity (3.1 g∙Lreactor-1∙dHRT-1) and yields (150 mg∙gVS-1; OLR = 21 gVS∙Lreactor-1∙dHRT-1; pH 7) of short-chain fatty acids could be significantly improved, specifically for acetic and propionic acids. From these results, a robust dark fermentation step for recovery of valuable products from the solids treatment step in a biorefinery can be achieved.


Assuntos
Esgotos , Águas Residuárias , Fermentação , Reatores Biológicos , Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio
2.
Bioresour Technol ; 369: 128363, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423764

RESUMO

In this study, impacts of toxic ions/acids found in real fermentation-hydrolysate on the model exoelectrogenic G. sulfurreducens were investigated. Initially, different concentrations of acetate, butyrate, propionate, Na+, and K+ were tested, individually and in combination, for effects on the planktonic growth, followed by validation with diluted-hydrolysate. Meanwhile, it could be shown that (1) excess Na+ (≥100 mM) causes inhibition that can be reduced by K+ replacement, (2) butyrate (≥10 mM) induces higher toxicity than propionate, and (3) hydrolysate induces synergistic inhibition to G. sulfurreducens where organic constituents contributed more than Na+. Afterwards, compared with impacts on planktonic cells, the pre-enriched anodic biofilm of G. sulfurreducens in BESs showed higher robustness against diluted-hydrolysate, achieving current densities of 1.4-1.7 A/m2 (at up to ∼30 mM butyrate and propionate as well as ∼240 mM Na+). As a conclusion, using G. sulfurreducens in BESs dealing with fermentation-hydrolysate can be regulated for efficacious energy recovery.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Fermentação , Propionatos , Geobacter/fisiologia , Butiratos
3.
Bioresour Technol ; 335: 125287, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34034065

RESUMO

Biogas upgrading is a necessary step to minimize the CO2 of raw biogas and to make it suitable for gas liquefaction or introduction into the national gas grid. Biomethanation is a promising approach since it converts the CO2 to more methane on site, while taking advantage of the organisms responsible for biogas production in the first place. This study investigates the suitability of a pseudo-dead-end membrane biofilm reactor (MBfR) for ex-situ biogas upgrading using biogas as sole carbon source as well as for additional acetoclastic methanation when an organic carbon source is provided. Results prove that the concept of MBfR is especially advantageous for ex-situ hydrogenotrophic methanation of biogas CO2, yielding high product gas qualities of up to 99% methane. It is discussed that cross-flow membrane operation could reduce mass flux of inert methane through membranes, attached biofilms, and reactor liquid, and, thus, improve methanation space time yields.


Assuntos
Biocombustíveis , Reatores Biológicos , Biofilmes , Carbono , Dióxido de Carbono , Hidrogênio , Metano
4.
Bioresour Technol ; 319: 124166, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32992271

RESUMO

In this study, lab-scale batch fermentation tests were carried out at mesophilic temperature (30 °C) to examine the influence of inoculum type, pH-value, and thermal pretreatment of substrate on propionic acid (PA) production from dog food. The selected inocula comprised a mixed bacterial culture, milk, and soft goat cheese. The batch tests were performed at pH 4, pH 6, and pH 8 for both, untreated and thermally pretreated food. Results show that the production of PA and volatile fatty acids (VFAs) in general were significantly dependent on the chosen inoculum and adjusted pH value. The maximum PA production rates and yields were determined for the cheese inoculum at pH 6 using untreated and pretreated dog food. PA concentration reached 10 gL-1and 26.5 gL-1, respectively. Our findings show that by selecting optimal process parameters, an efficient PA production from model food waste can be achieved.


Assuntos
Propionatos , Eliminação de Resíduos , Animais , Reatores Biológicos , Cães , Ácidos Graxos Voláteis , Fermentação , Alimentos , Concentração de Íons de Hidrogênio
5.
Bioresour Technol ; 321: 124444, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33285505

RESUMO

Biomethanation of CO2 has been proven to be a feasible way to produce methane with the employment of H2 as electron source. Subject of the present study is a custom-made membrane biofilm reactor for hydrogenotrophic methanation by archaeal biofilms cultivated on membrane surfaces. Reactor layout was adapted to allow for in situ biofilm analysis via optical coherence tomography. At a feeding ratio of H2/CO2 of 3.6, and despite the low membrane surface to reactor volume ratio of 57.9 m2 m-3, the maximum methane production per reactor volume reached up to 1.17 Nm3 m-3 d-1 at a methane content of the produced gas above 97% (v/v). These results demonstrate that the concept of membrane bound biofilms enables improved mass transfer by delivering substrate gases directly to the biofilm, thus, rendering the bottleneck of low solubility of hydrogen in water less drastic.


Assuntos
Reatores Biológicos , Metano , Biofilmes , Hidrogênio
6.
ISME J ; 14(5): 1125-1140, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31996786

RESUMO

Coupling microbial electrosynthesis to renewable energy sources can provide a promising future technology for carbon dioxide conversion. However, this technology suffers from a limited number of suitable biocatalysts, resulting in a narrow product range. Here, we present the characterization of the first thermoacidophilic electroautotrophic community using chronoamperometric, metagenomic, and 13C-labeling analyses. The cathodic biofilm showed current consumption of up to -80 µA cm-2 over a period of 90 days (-350 mV vs. SHE). Metagenomic analyses identified members of the genera Moorella, Desulfofundulus, Thermodesulfitimonas, Sulfolobus, and Acidianus as potential primary producers of the biofilm, potentially thriving via an interspecies sulfur cycle. Hydrogenases seem to be key for cathodic electron uptake. An isolation campaign led to a pure culture of a Knallgas bacterium from this community. Growth of this organism on cathodes led to increasing reductive currents over time. Transcriptomic analyses revealed a distinct gene expression profile of cells grown at a cathode. Moreover, pressurizable flow cells combined with optical coherence tomography allowed an in situ observation of cathodic biofilm growth. Autotrophic growth was confirmed via isotope analysis. As a natural polyhydroxybutyrate (PHB) producer, this novel species, Kyrpidia spormannii, coupled the production of PHB to CO2 fixation on cathode surfaces.


Assuntos
Bacillales/fisiologia , Biofilmes/crescimento & desenvolvimento , Extremófilos/fisiologia , Processos Autotróficos , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Eletrodos , Extremófilos/metabolismo , Hidrogenase/metabolismo
7.
Biotechnol Bioeng ; 116(10): 2687-2697, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31161652

RESUMO

In white biotechnology research, the putative superiority of productive biofilms to conventional biotransformation processes based on planktonic cultures has been increasingly discussed in recent years. In the present study, we chose lactic acid production as a model application to evaluate biofilm potential. A pure culture of Lactobacillus bacteria was grown in a tubular biofilm reactor. The biofilm system was cultivated monoseptically in a continuous mode for more than 3 weeks. The higher cell densities that could be obtained in the continuous biofilm system compared with the planktonic culture led to a significantly increased space-time yield. The productivity reached 80% of the maximum value 10 days after start-up and no subsequent decline was observed, confirming the suitability of the system for long-term fermentation. The analysis of biofilm performance revealed that productivity increases with the flow velocity. This is explained by the reduced retention time of the liquid phase in the reactor, and, thus, a minor pH drop caused by the released lactic acid. At low flow velocities, the pH drops to a value where growth and production are significantly inhibited. The biofilm was visualized by magnetic resonance imaging to analyze biofilm thickness. To deepen the understanding of the biofilm system, we used a simple model for cell growth and lactic acid production.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Ácido Láctico/biossíntese , Lactobacillus delbrueckii/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA