Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 36(24): 3363-3377, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31146654

RESUMO

Ventilatory pacing by electrical stimulation of the phrenic nerve or of the diaphragm has been shown to enhance quality of life compared to mechanical ventilation. However, commercially available ventilatory pacing devices require initial manual specification of stimulation parameters and frequent adjustment to achieve and maintain suitable ventilation over long periods of time. Here, we have developed an adaptive, closed-loop, neuromorphic, pattern-shaping controller capable of automatically determining a suitable stimulation pattern and adapting it to maintain a desired breath-volume profile on a breath-by-breath basis. The system adapts the pattern of stimulation parameters based on the error between the measured volume sampled every 40 ms and a desired breath volume profile. In vivo studies in anesthetized male Sprague-Dawley rats without and with spinal cord injury by spinal hemisection at C2 indicated that the controller was capable of automatically adapting stimulation parameters to attain a desired volume profile. Despite diaphragm hemiparesis, the controller was able to achieve a desired volume in the injured animals that did not differ from the tidal volume observed before injury (p = 0.39). Closed-loop adaptive pacing partially mitigated hypoventilation as indicated by reduction of end-tidal CO2 values during pacing. The closed-loop controller was developed and parametrized in a computational testbed before in vivo assessment. This bioelectronic technology could serve as an individualized and autonomous respiratory pacing approach for support or recovery from ventilatory deficiency.


Assuntos
Diafragma/fisiologia , Ventilação Pulmonar/fisiologia , Respiração Artificial/métodos , Traumatismos da Medula Espinal/fisiopatologia , Animais , Vértebras Cervicais/lesões , Diafragma/inervação , Masculino , Nervo Frênico/fisiologia , Ratos , Ratos Sprague-Dawley , Respiração Artificial/instrumentação , Traumatismos da Medula Espinal/terapia , Volume de Ventilação Pulmonar/fisiologia
2.
J Neurophysiol ; 113(7): 2666-75, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673734

RESUMO

Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI.


Assuntos
Tornozelo/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Modelos Biológicos , Contração Muscular , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Adaptação Fisiológica , Animais , Simulação por Computador , Feminino , Marcha , Transtornos Neurológicos da Marcha/etiologia , Atrofia Muscular/etiologia , Atrofia Muscular/fisiopatologia , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/complicações
3.
J Neuroeng Rehabil ; 10: 97, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23947694

RESUMO

BACKGROUND: Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. METHODS: 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. RESULTS: Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. CONCLUSIONS: Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.


Assuntos
Articulação do Tornozelo/fisiopatologia , Locomoção/fisiologia , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Articulação do Tornozelo/patologia , Atrofia , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Músculo Esquelético/patologia , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/reabilitação
4.
Ann N Y Acad Sci ; 1279: 164-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23531014

RESUMO

A traumatic spinal injury can destroy cells, irreparably damage axons, and trigger a cascade of biochemical responses that increase the extent of injury. Although damaged central nervous system axons do not regrow well naturally, the distributed nature of the nervous system and its capacity to adapt provide opportunities for recovery of function. It is apparent that activity-dependent plasticity plays a role in this recovery and that the endogenous response to injury heightens the capacity for recovery for at least several weeks postinjury. To restore locomotor function, researchers have investigated the use of treadmill-based training, robots, and electrical stimulation to tap into adaptive activity-dependent processes. The current challenge is to maximize the degree of functional recovery. This manuscript reviews the endogenous neural system response to injury, and reviews data and presents novel analyses of these from a rat model of contusion injury that demonstrates how a targeted intervention can accelerate recovery, presumably by engaging processes that underlie activity-dependent plasticity.


Assuntos
Locomoção/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Aceleração , Animais , Contusões/patologia , Contusões/fisiopatologia , Contusões/reabilitação , Modelos Animais de Doenças , Humanos , Modelos Biológicos , Regeneração Nervosa/fisiologia , Ratos , Traumatismos da Medula Espinal/patologia , Traumatismos da Coluna Vertebral/patologia , Traumatismos da Coluna Vertebral/fisiopatologia
5.
J Occup Environ Hyg ; 1(4): 222-36, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15204861

RESUMO

Occupational exposure limits (OELs) for irritant dusts have had no quantifiable bases. This study (1) charted chemosensory feel, denoted chemesthesis here, to dusts of calcium oxide (1 to 5 mg/m(3)), sodium tetraborate pentahydrate [sodium borate] (5 to 40 mg/m(3)), and calcium sulfate (10 to 40 mg/m(3)); (2) examined correlates of the chemesthetic sensations; and (3) sought to illuminate the basis for potency. Twelve screened men exercised against a light load while they breathed air in a dome fed with controlled levels of dust for 20 min. Measured parameters included nasal resistance, nasal secretion, minute ventilation, heart rate, blood oxygenation, mucociliary transport time, and chemesthetic magnitude, calibrated to pungency of carbon dioxide. Subjects registered time-dependent feel from exposures principally in the nose, secondarily in the throat, and hardly in the eyes. Calcium oxide had the greatest potency, followed by sodium borate, with calcium sulfate a distant third. Of the physiological parameters, amount of secretion showed the best association with chemesthetic potency. That measure, as well as mucociliary transport time and minute ventilation, went into calculation of mass of dust dissolved into mucus. The calculations indicated that the two alkaline dusts increased in equal molar amounts with time. At equal molar concentrations, they had, to a first approximation, equal chemesthetic magnitude. On the basis of mass concentration in air or dissolved into mucus, calcium oxide and sodium borate differed in potency by a factor just above five, equal to the difference in their molecular weights. This relationship could inform the setting of OELs for a critical effect of irritation.


Assuntos
Boratos/efeitos adversos , Boratos/análise , Compostos de Cálcio/efeitos adversos , Compostos de Cálcio/análise , Sulfato de Cálcio/efeitos adversos , Sulfato de Cálcio/análise , Poeira , Exposição por Inalação , Exposição Ocupacional , Óxidos/efeitos adversos , Óxidos/análise , Percepção , Adolescente , Adulto , Relação Dose-Resposta a Droga , Humanos , Irritantes/análise , Irritantes/farmacologia , Masculino , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA