Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(23): eadn6056, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838149

RESUMO

Extensive ice coverage largely prevents investigations of Antarctica's unglaciated past. Knowledge about environmental and tectonic development before large-scale glaciation, however, is important for understanding the transition into the modern icehouse world. We report geochronological and sedimentological data from a drill core from the Amundsen Sea shelf, providing insights into tectonic and topographic conditions during the Eocene (~44 to 34 million years ago), shortly before major ice sheet buildup. Our findings reveal the Eocene as a transition period from >40 million years of relative tectonic quiescence toward reactivation of the West Antarctic Rift System, coinciding with incipient volcanism, rise of the Transantarctic Mountains, and renewed sedimentation under temperate climate conditions. The recovered sediments were deposited in a coastal-estuarine swamp environment at the outlet of a >1500-km-long transcontinental river system, draining from the rising Transantarctic Mountains into the Amundsen Sea. Much of West Antarctica hence lied above sea level, but low topographic relief combined with low elevation inhibited widespread ice sheet formation.

2.
Proc Natl Acad Sci U S A ; 121(11): e2211711120, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408214

RESUMO

Today, relatively warm Circumpolar Deep Water is melting Thwaites Glacier at the base of its ice shelf and at the grounding zone, contributing to significant ice retreat. Accelerating ice loss has been observed since the 1970s; however, it is unclear when this phase of significant melting initiated. We analyzed the marine sedimentary record to reconstruct Thwaites Glacier's history from the early Holocene to present. Marine geophysical surveys were carried out along the floating ice-shelf margin to identify core locations from various geomorphic settings. We use sedimentological data and physical properties to define sedimentary facies at seven core sites. Glaciomarine sediment deposits reveal that the grounded ice in the Amundsen Sea Embayment had already retreated to within ~45 km of the modern grounding zone prior to ca. 9,400 y ago. Sediments deposited within the past 100+ y record abrupt changes in environmental conditions. On seafloor highs, these shifts document ice-shelf thinning initiating at least as early as the 1940s. Sediments recovered from deep basins reflect a transition from ice proximal to slightly more distal conditions, suggesting ongoing grounding-zone retreat since the 1950s. The timing of ice-shelf unpinning from the seafloor for Thwaites Glacier coincides with similar records from neighboring Pine Island Glacier. Our work provides robust new evidence that glacier retreat in the Amundsen Sea was initiated in the mid-twentieth century, likely associated with climate variability.

3.
Sci Total Environ ; 903: 166157, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572912

RESUMO

The marine habitat beneath Antarctica's ice shelves spans ∼1.6 million km2, and life in this vast and extreme environment is among Earth's least accessible, least disturbed and least known, yet likely to be impacted by climate-forced warming and environmental change. Although competition among biota is a fundamental structuring force of ecological communities, hence ecosystem functions and services, nothing was known of competition for resources under ice shelves, until this study. Boreholes drilled through a âˆ¼ 200 m thick ice shelf enabled collections of novel sub-ice-shelf seabed sediment which contained fragments of biogenic substrata rich in encrusting (lithophilic) macrobenthos, principally bryozoans - a globally-ubiquitous phylum sensitive to environmental change. Analysis of sub-glacial biogenic substrata, by stereo microscopy, provided first evidence of spatial contest competition, enabling generation of a new range of competition measures for the sub-ice-shelf benthic space. Measures were compared with those of global open-water datasets traversing polar, temperate and tropical latitudes (and encompassing both hemispheres). Spatial competition in sub-ice-shelf samples was found to be higher in intensity and severity than all other global means. The likelihood of sub-ice-shelf competition being intraspecific was three times lower than for open-sea polar continental shelf areas, and competition complexity, in terms of the number of different types of competitor pairings, was two-fold higher. As posited for an enduring disturbance minimum, a specific bryozoan clade was especially competitively dominant in sub-ice-shelf samples compared with both contemporary and fossil assemblage records. Overall, spatial competition under an Antarctic ice shelf, as characterised by bryozoan interactions, was strikingly different from that of open-sea polar continental shelf sites, and more closely resembled tropical and temperate latitudes. This study represents the first analysis of sub-ice-shelf macrobenthic spatial competition and provides a new ecological baseline for exploring, monitoring and comparing ecosystem response to environmental change in a warming world.

5.
Curr Biol ; 31(24): R1566-R1567, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34932962

RESUMO

Where polar ice sheets meet the coast, they can flow into the sea as floating ice shelves. The seabed underneath is in complete darkness, and may be Earth's least known surface habitat. Few taxa there have been fully identified to named species (see Supplemental information) - remarkable for a habitat spanning nearly 1.6 million km2. Glimpses of life there have come from cameras dropped through 10 boreholes, mainly at the three largest Antarctic ice shelves - the Ross (McMurdo), Filchner-Ronne and Amery. Pioneering studies of life under boreholes found distinct morphotypes of perhaps >50 species. Here, we report remarkable growth and persistence over thousands of years of benthic faunal species collected in 2018 from the seabed under the Ekström Ice Shelf (EIS), Weddell Sea.


Assuntos
Ecossistema , Camada de Gelo , Regiões Antárticas
6.
Nature ; 580(7801): 81-86, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238944

RESUMO

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1-5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf-the southernmost Cretaceous record reported so far-and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82° S during the Turonian-Santonian age (92 to 83 million years ago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120-1,680 parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/história , Clima , Floresta Úmida , Temperatura , Regiões Antárticas , Fósseis , Sedimentos Geológicos/química , História Antiga , Modelos Teóricos , Nova Zelândia , Pólen , Esporos/isolamento & purificação
7.
Proc Natl Acad Sci U S A ; 117(8): 3996-4006, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32047039

RESUMO

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice-climate feedbacks that further amplify warming.

8.
Nat Commun ; 10(1): 5635, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822661

RESUMO

Reductions in the thickness and extent of Antarctic ice shelves are triggering increased discharge of marine-terminating glaciers. While the impacts of recent changes are well documented, their role in modulating past ice-sheet dynamics remains poorly constrained. This reflects two persistent issues; first, the effective discrimination of sediments and landforms solely attributable to sub-ice-shelf deposition, and second, challenges in dating these records. Recent progress in deciphering the geological imprint of Antarctic ice shelves is summarised, including advances in dating methods and proxies to reconstruct drivers of change. Finally, we identify several challenges to overcome to fully exploit the paleo record.

9.
PLoS One ; 12(7): e0181593, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742864

RESUMO

Precise knowledge about the extent of the West Antarctic Ice Sheet (WAIS) at the Last Glacial Maximum (LGM; c. 26.5-19 cal. ka BP) is important in order to 1) improve paleo-ice sheet reconstructions, 2) provide a robust empirical framework for calibrating paleo-ice sheet models, and 3) locate potential shelf refugia for Antarctic benthos during the last glacial period. However, reliable reconstructions are still lacking for many WAIS sectors, particularly for key areas on the outer continental shelf, where the LGM-ice sheet is assumed to have terminated. In many areas of the outer continental shelf around Antarctica, direct geological data for the presence or absence of grounded ice during the LGM is lacking because of post-LGM iceberg scouring. This also applies to most of the outer continental shelf in the Amundsen Sea. Here we present detailed marine geophysical and new geological data documenting a sequence of glaciomarine sediments up to ~12 m thick within the deep outer portion of Abbot Trough, a palaeo-ice stream trough on the outer shelf of the Amundsen Sea Embayment. The upper 2-3 meters of this sediment drape contain calcareous foraminifera of Holocene and (pre-)LGM age and, in combination with palaeomagnetic age constraints, indicate that continuous glaciomarine deposition persisted here since well before the LGM, possibly even since the last interglacial period. Our data therefore indicate that the LGM grounding line, whose exact location was previously uncertain, did not reach the shelf edge everywhere in the Amundsen Sea. The LGM grounding line position coincides with the crest of a distinct grounding-zone wedge ~100 km inland from the continental shelf edge. Thus, an area of ≥6000 km2 remained free of grounded ice through the last glacial cycle, requiring the LGM grounding line position to be re-located in this sector, and suggesting a new site at which Antarctic shelf benthos may have survived the last glacial period.

10.
Nature ; 547(7661): 43-48, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28682333

RESUMO

Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.7 thousand years ago to the present). The chemical compositions of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector from at least 10,400 years ago until 7,500 years ago-when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream-and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models.


Assuntos
Congelamento , Aquecimento Global/história , Temperatura Alta , Camada de Gelo , Modelos Teóricos , Água do Mar/análise , Vento , Regiões Antárticas , Foraminíferos/química , Foraminíferos/isolamento & purificação , Sedimentos Geológicos/análise , Aquecimento Global/estatística & dados numéricos , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , Oceanos e Mares , Reprodutibilidade dos Testes , Água do Mar/química
11.
Nat Commun ; 8: 15591, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569750

RESUMO

Subglacial lakes are widespread beneath the Antarctic Ice Sheet but their control on ice-sheet dynamics and their ability to harbour life remain poorly characterized. Here we present evidence for a palaeo-subglacial lake on the Antarctic continental shelf. A distinct sediment facies recovered from a bedrock basin in Pine Island Bay indicates deposition within a low-energy lake environment. Diffusive-advection modelling demonstrates that low chloride concentrations in the pore water of the corresponding sediments can only be explained by initial deposition of this facies in a freshwater setting. These observations indicate that an active subglacial meltwater network, similar to that observed beneath the extant ice sheet, was also active during the last glacial period. It also provides a new framework for refining the exploration of these unique environments.

12.
Nat Commun ; 8: 14798, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303885

RESUMO

The history of glaciations on Southern Hemisphere sub-polar islands is unclear. Debate surrounds the extent and timing of the last glacial advance and termination on sub-Antarctic South Georgia in particular. Here, using sea-floor geophysical data and marine sediment cores, we resolve the record of glaciation offshore of South Georgia through the transition from the Last Glacial Maximum to Holocene. We show a sea-bed landform imprint of a shelf-wide last glacial advance and progressive deglaciation. Renewed glacier resurgence in the fjords between c. 15,170 and 13,340 yr ago coincided with a period of cooler, wetter climate known as the Antarctic Cold Reversal, revealing a cryospheric response to an Antarctic climate pattern extending into the Atlantic sector of the Southern Ocean. We conclude that the last glaciation of South Georgia was extensive, and the sensitivity of its glaciers to climate variability during the last termination more significant than implied by previous studies.

13.
Nat Commun ; 7: 11146, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029225

RESUMO

Oxygen depletion in the upper ocean is commonly associated with poor ventilation and storage of respired carbon, potentially linked to atmospheric CO2 levels. Iodine to calcium ratios (I/Ca) in recent planktonic foraminifera suggest that values less than ∼2.5 µmol mol(-1) indicate the presence of O2-depleted water. Here we apply this proxy to estimate past dissolved oxygen concentrations in the near surface waters of the currently well-oxygenated Southern Ocean, which played a critical role in carbon sequestration during glacial times. A down-core planktonic I/Ca record from south of the Antarctic Polar Front (APF) suggests that minimum O2 concentrations in the upper ocean fell below 70 µmol kg(-1) during the last two glacial periods, indicating persistent glacial O2 depletion at the heart of the carbon engine of the Earth's climate system. These new estimates of past ocean oxygenation variability may assist in resolving mechanisms responsible for the much-debated ice-age atmospheric CO2 decline.

15.
Ecology ; 89(3): 682-92, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18459332

RESUMO

Today, Antarctica exhibits some of the harshest environmental conditions for life on Earth. During the last glacial period, Antarctic terrestrial and marine life was challenged by even more extreme environmental conditions. During the present interglacial period, polar life in the Southern Ocean is sustained mainly by large-scale primary production. We argue that during the last glacial period, faunal populations in the Antarctic were limited to very few areas of local marine productivity (polynyas), because complete, multiannual sea-ice and ice shelf coverage shut down most of the Southern Ocean productivity within today's seasonal sea-ice zone. Both marine sediments containing significant numbers of planktonic and benthic foraminifera and fossil bird stomach oil deposits in the adjacent Antarctic hinterland provide indirect evidence for the existence of polynyas during the last glacial period. We advocate that the existence of productive oases in the form of polynyas during glacial periods was essential for the survival of marine and most higher-trophic terrestrial fauna. Reduced to such refuges, much of today's life in the high Antarctic realm might have hung by a thread during the last glacial period, because limited resources available to the food web restricted the abundance and productivity of both Antarctic terrestrial and marine life.


Assuntos
Ecossistema , Cadeia Alimentar , Abastecimento de Alimentos , Camada de Gelo , Fenômenos Fisiológicos Vegetais , Animais , Regiões Antárticas , Biodiversidade , Demografia , Biologia Marinha , Oceanos e Mares , Dinâmica Populacional , Estações do Ano , Especificidade da Espécie
16.
Biol Rev Camb Philos Soc ; 83(2): 103-17, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18429764

RESUMO

Antarctica is a continent locked in ice, with almost 99.7% of current terrain covered by permanent ice and snow, and clear evidence that, as recently as the Last Glacial Maximum (LGM), ice sheets were both thicker and much more extensive than they are now. Ice sheet modelling of both the LGM and estimated previous ice maxima across the continent give broad support to the concept that most if not all currently ice-free ground would have been overridden during previous glaciations. This has given rise to a widely held perception that all Mesozoic (pre-glacial) terrestrial life of Antarctica was wiped out by successive and deepening glacial events. The implicit conclusion of such destruction is that most, possibly all, contemporary terrestrial life has colonised the continent during subsequent periods of glacial retreat. However, several recently emerged and complementary strands of biological and geological research cannot be reconciled comfortably with the current reconstruction of Antarctic glacial history, and therefore provide a fundamental challenge to the existing paradigms. Here, we summarise and synthesise evidence across these lines of research. The emerging fundamental insights corroborate substantial elements of the contemporary Antarctic terrestrial biota being continuously isolated in situ on a multi-million year, even pre-Gondwana break-up timescale. This new and complex terrestrial Antarctic biogeography parallels recent work suggesting greater regionalisation and evolutionary isolation than previously suspected in the circum-Antarctic marine fauna. These findings both require the adoption of a new biological paradigm within Antarctica and challenge current understanding of Antarctic glacial history. This has major implications for our understanding of the key role of Antarctica in the Earth System.


Assuntos
Biodiversidade , Biomassa , Ecossistema , Gelo , Desenvolvimento Vegetal , Animais , Regiões Antárticas , Evolução Biológica , Meio Ambiente , Oceanos e Mares
17.
Trends Ecol Evol ; 20(10): 534-40, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16701431

RESUMO

Environmental conditions fostering marine communities around Antarctica differ fundamentally from those in the rest of the world's oceans, particularly in terms of pronounced climatic fluctuations and extreme cold. Here, we argue that the rarity of pelagic larval stages in Antarctic marine benthic invertebrate species is a consequence of evolutionary temperature adaptation and that this has greatly contributed to the current structure of the Antarctic benthic community. In arguing this position, we challenge the likelihood of previously suggested survival strategies of benthic communities on the Antarctic continental shelf and slope during Cenozoic glacial periods. By integrating evidence from marine geology and geophysics, we suggest that the Antarctic continental shelf and slope were both unfavourable environments for benthic communities during glacial periods and that community survival was only possible in the deep sea or in shelters on the continental shelf as a result of the diachronism in maximum ice extent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA