Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 165, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438818

RESUMO

BACKGROUND: The majority of women with epithelial ovarian cancer (OvCa) are diagnosed with metastatic disease, resulting in a poor 5-year survival of 31%. Obesity is a recognized non-infectious pandemic that increases OvCa incidence, enhances metastatic success and reduces survival. We have previously demonstrated a link between obesity and OvCa metastatic success in a diet-induced obesity mouse model wherein a significantly enhanced tumor burden was associated with a decreased M1/M2 tumor-associated macrophage ratio (Liu Y et al. Can, Res. 2015; 75:5046-57). METHODS: The objective of this study was to use pre-clinical murine models of diet-induced obesity to evaluate the effect of a high fat diet (HFD) on response to standard of care chemotherapy and to assess obesity-associated changes in the tumor microenvironment. Archived tumor tissues from ovarian cancer patients of defined body mass index (BMI) were also evaluated using multiplexed immunofluorescence analysis of immune markers. RESULTS: We observed a significantly diminished response to standard of care paclitaxel/carboplatin chemotherapy in HFD mice relative to low fat diet (LFD) controls. A corresponding decrease in the M1/M2 macrophage ratio and enhanced tumor fibrosis were observed both in murine DIO studies and in human tumors from women with BMI > 30. CONCLUSIONS: Our data suggest that the reported negative impact of obesity on OvCa patient survival may be due in part to the effect of the altered M1/M2 tumor-associated macrophage ratio and enhanced fibrosis on chemosensitivity. These data demonstrate a contribution of host obesity to ovarian tumor progression and therapeutic response and support future combination strategies targeting macrophage polarization and/or fibrosis in the obese host.


Assuntos
Neoplasias Ovarianas , Padrão de Cuidado , Humanos , Feminino , Animais , Camundongos , Microambiente Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Obesidade/complicações , Carcinoma Epitelial do Ovário
2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372952

RESUMO

Ovarian cancer is the sixth leading cause of cancer-related death in women, and both occurrence and mortality are increased in women over the age of 60. There are documented age-related changes in the ovarian cancer microenvironment that have been shown to create a permissive metastatic niche, including the formation of advanced glycation end products, or AGEs, that form crosslinks between collagen molecules. Small molecules that disrupt AGEs, known as AGE breakers, have been examined in other diseases, but their efficacy in ovarian cancer has not been evaluated. The goal of this pilot study is to target age-related changes in the tumor microenvironment with the long-term aim of improving response to therapy in older patients. Here, we show that AGE breakers have the potential to change the omental collagen structure and modulate the peritoneal immune landscape, suggesting a potential use for AGE breakers in the treatment of ovarian cancer.


Assuntos
Produtos Finais de Glicação Avançada , Neoplasias Ovarianas , Humanos , Feminino , Idoso , Projetos Piloto , Colágeno , Neoplasias Ovarianas/tratamento farmacológico , Microambiente Tumoral
3.
Biomaterials ; 297: 122110, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062214

RESUMO

Obesity has been linked with numerous health issues as well as an increased risk of breast cancer. Although effects of direct obesity in patient outcomes is widely studied, effects of exposure to obesity-related systemic influences in utero have been overlooked. In this study, we investigated the effect of multigenerational obesity on epithelial cell migration and invasion using decellularized breast tissues explanted from normal female mouse pups from a diet induced multigenerational obesity mouse model. We first studied the effect of multigenerational diet on the mechanical properties, adipocyte size, and collagen structure of these mouse breast tissues, and then, examined the migration and invasion behavior of normal (KTB-21) and cancerous (MDA-MB-231) human mammary epithelial cells on the decellularized matrices from each diet group. Breast tissues of mice whose dams had been fed with high-fat diet exhibited larger adipocytes and thicker and curvier collagen fibers, but only slightly elevated elastic modulus and inflammatory cytokine levels. MDA-MB-231 cancer cell motility and invasion were significantly greater on the decellularized matrices from mice whose dams were fed with high-fat diet. A similar trend was observed with normal KTB-21 cells. Our results showed that the collagen curvature was the dominating factor on this enhanced motility and stretching the matrices to equalize the collagen fiber linearity of the matrices ameliorated the observed increase in cell migration and invasion in the mice that were exposed to a high-fat diet in utero. Previous studies indicated an increase in serum leptin concentration for those children born to an obese mother. We generated extracellular matrices using primary fibroblasts exposed to various concentrations of leptin. This produced curvier ECM and increased breast cancer cell motility for cells seeded on the decellularized ECM generated with increasing leptin concentration. Our study shows that exposure to obesity in utero is influential in determining the extracellular matrix structure, and that the resultant change in collagen curvature is a critical factor in regulating the migration and invasion of breast cancer cells.


Assuntos
Neoplasias da Mama , Obesidade Materna , Criança , Feminino , Humanos , Camundongos , Gravidez , Animais , Leptina , Linhagem Celular Tumoral , Colágeno/farmacologia , Matriz Extracelular , Células Epiteliais , Obesidade , Fenótipo
4.
Aging Cancer ; 3(2): 116-129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36188490

RESUMO

Background: Age is the most significant risk factor for ovarian cancer (OvCa), the deadliest gynecologic malignancy. Metastasizing OvCa cells adhere to the omentum, a peritoneal structure rich in collagen, adipocytes, and immune cells. Ultrastructural changes in the omentum and the omental collagen matrix with aging have not been evaluated. Aim: The aim of this study was to test the hypothesis that age-related changes in collagen in the ovarian tumor microenvironment promote OvCa metastatic success in the aged host. Methods/Results: Young (3-6 months) and aged mice (20-23 months) were used to study the role of aging in metastatic success. Intra-peritoneal (IP) injection of ID8Trp53 -/- ovarian cancer cells showed enhanced IP dissemination in aged vs young mice. In vitro assays using purified collagen demonstrated reduced collagenolysis of aged fibers, as visualized using scanning electron microscopy (SEM) and quantified with a hydroxyproline release assay. Omental tumors in young and aged mice showed similar collagen deposition; however enhanced intra-tumoral collagen remodeling was seen in aged mice probed with a biotinylated collagen hybridizing peptide (CHP). In contrast, second harmonic generation (SHG) microscopy showed significant differences in collagen fiber structure and organization in omental tissue and SEM demonstrated enhanced omental fenestration in aged omenta. Combined SHG and Alexa Fluor-CHP microscopy in vivo demonstrated that peri-tumoral collagen was remodeled more extensively in young mice. This collagen population represents truly aged host collagen, in contrast to intra-tumoral collagen that is newly synthesized, likely by cancer associated fibroblasts (CAFs). Conclusions: Our results demonstrate that tumors in an aged host can grow with minimal collagen remodeling, while tumors in the young host must remodel peri-tumoral collagen to enable effective proliferation, providing a mechanism whereby age-induced ultrastructural changes in collagen and collagen-rich omenta establish a permissive pre-metastatic niche contributing to enhanced OvCa metastatic success in the aged host.

5.
Methods Mol Biol ; 2424: 199-216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34918297

RESUMO

In vivo and ex vivo analyses of omental adhesion in ovarian cancer (OvCa) are necessary to understand the dynamics of OvCa metastasis. Here we describe methods to analyze OvCa omental adhesion, including in vivo and ex vivo fluorescent imaging, advanced microscopy, and histological techniques. The use of fluorescently tagged OvCa cells allows for omental tumor visualization and quantification in adhesion and tumor studies. Additionally, advanced microscopy modalities allow for visualization and multiplexed analysis of OvCa omental adhesion. Second harmonic generation microscopy permits the visualization and analysis of omental collagen, specifically the tumor-associated collagen signature that forms as the tumor progresses. Scanning electron microscopy is used for the observation of microscopic details between OvCa cells and the omentum, such as tunneling nanotubes or microvilli. Histological methods are used to investigate several intratumoral properties including visualizing tumor structure using hematoxylin and eosin stain; quantifying collagen with Masson's trichrome stain; analyzing collagen structure with a collagen hybridizing peptide; and identifying a number of markers including, but not limited to proliferation, immune cell types, adhesion molecules, and fibroblasts with immunohistochemistry. Both the in vivo and ex vivo imaging modalities and subsequent analysis can provide insight into the interaction of metastasizing OvCa cells and the omentum.


Assuntos
Omento , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Estruturas da Membrana Celular , Colágeno , Feminino , Humanos , Nanotubos
6.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830322

RESUMO

Mesothelin (MSLN), a glycoprotein normally expressed by mesothelial cells, is overexpressed in ovarian cancer (OvCa) suggesting a role in tumor progression, although the biological function is not fully understood. OvCa has a high mortality rate due to diagnosis at advanced stage disease with intraperitoneal metastasis. Tumor cells detach from the primary tumor as single cells or multicellular aggregates (MCAs) and attach to the mesothelium of organs within the peritoneal cavity producing widely disseminated secondary lesions. To investigate the role of host MSLN in the peritoneal cavity we used a mouse model with a null mutation in the MSLN gene (MSLNKO). The deletion of host MSLN expression modified the peritoneal ultrastructure resulting in abnormal mesothelial cell surface architecture and altered omental collagen fibril organization. Co-culture of murine OvCa cells with primary mesothelial cells regardless of MSLN expression formed compact MCAs. However, co-culture with MSLNKO mesothelial cells resulted in smaller MCAs. An allograft tumor study, using wild-type mice (MSLNWT) or MSLNKO mice injected intraperitoneally with murine OvCa cells demonstrated a significant decrease in peritoneal metastatic tumor burden in MSLNKO mice compared to MSLNWT mice. Together, these data support a role for host MSLN in the progression of OvCa metastasis.


Assuntos
Células Epiteliais/metabolismo , Mesotelina/genética , Neoplasias Ovarianas/genética , Neoplasias Peritoneais/genética , Células Estromais/metabolismo , Microambiente Tumoral/genética , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Células Epiteliais/patologia , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Mesotelina/deficiência , Mesotelina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/secundário , Células Estromais/patologia
7.
Cancer Lett ; 503: 163-173, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33524500

RESUMO

The majority of women with ovarian cancer are diagnosed with metastatic disease, therefore elucidating molecular events that contribute to successful metastatic dissemination may identify additional targets for therapeutic intervention and thereby positively impact survival. Using two human high grade serous ovarian cancer cell lines with inactive TP53 and multiple rounds of serial in vivo passaging, we generated sublines with significantly accelerated intra-peritoneal (IP) growth. Comparative analysis of the parental and IP sublines identified a common panel of differentially expressed genes. The most highly differentially expressed gene, upregulated by 60-65-fold in IP-selected sublines, was the type I transmembrane protein AMIGO2. As the role of AMIGO2 in ovarian cancer metastasis remains unexplored, CRISPR/Cas9 was used to reduce AMIGO2 expression, followed by in vitro and in vivo functional analyses. Knockdown of AMIGO2 modified the sphere-forming potential of ovarian cancer cells, reduced adhesion and invasion in vitro, and significantly attenuated IP metastasis. These data highlight AMIGO2 as a new target for a novel anti-metastatic therapeutic approach aimed at blocking cohesion, survival, and adhesion of metastatic tumorspheres.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/secundário , Regulação para Cima , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mutação , Transplante de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Proteína Supressora de Tumor p53/genética
8.
Cancer Res ; 80(5): 1156-1170, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932454

RESUMO

The noncanonical Wnt ligand Wnt5a is found in high concentrations in ascites of women with ovarian cancer. In this study, we elucidated the role of Wnt5a in ovarian cancer metastasis. Wnt5a promoted ovarian tumor cell adhesion to peritoneal mesothelial cells as well as migration and invasion, leading to colonization of peritoneal explants. Host components of the ovarian tumor microenvironment, notably peritoneal mesothelial cells and visceral adipose, secreted Wnt5a. Conditional knockout of host WNT5A significantly reduced peritoneal metastatic tumor burden. Tumors formed in WNT5A knockout mice had elevated cytotoxic T cells, increased M1 macrophages, and decreased M2 macrophages, indicating that host Wnt5a promotes an immunosuppressive microenvironment. The Src family kinase Fgr was identified as a downstream effector of Wnt5a. These results highlight a previously unreported role for host-expressed Wnt5a in ovarian cancer metastasis and suggest Fgr as a novel target for inhibition of ovarian cancer metastatic progression.Significance: This study establishes host-derived Wnt5a, expressed by peritoneal mesothelial cells and adipocytes, as a primary regulator of ovarian cancer intraperitoneal metastatic dissemination and identifies Fgr kinase as novel target for inhibition of metastasis.


Assuntos
Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/imunologia , Peritônio/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteína Wnt-5a/metabolismo , Quinases da Família src/metabolismo , Animais , Carcinoma Epitelial do Ovário/imunologia , Adesão Celular/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Peritoneais/secundário , Peritônio/citologia , Peritônio/imunologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Proteína Wnt-5a/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancers (Basel) ; 10(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134520

RESUMO

Ovarian cancer is the deadliest gynecological disease among U.S. women. Poor 5-year survival rates (<30%) are due to presentation of most women at diagnosis with advanced stage disease with widely disseminated intraperitoneal metastasis. However, when diagnosed before metastatic propagation the overall 5-year survival rate is >90%. Metastasizing tumor cells grow rapidly and aggressively attach to the mesothelium of all organs within the peritoneal cavity, including the parietal peritoneum and the omentum, producing secondary lesions. In this review, the involvement of mesothelin (MSLN) in the tumor microenvironment is discussed. MSLN, a 40kDa glycoprotein that is overexpressed in many cancers including ovarian and mesotheliomas is suggested to play a role in cell survival, proliferation, tumor progression, and adherence. However, the biological function of MSLN is not fully understood as MSLN knockout mice do not present with an abnormal phenotype. Conversely, MSLN has been shown to bind to the ovarian cancer antigen, CA-125, and thought to play a role in the peritoneal diffusion of ovarian tumor cells. Although the cancer-specific expression of MSLN makes it a potential therapeutic target, more studies are needed to validate the role of MSLN in tumor metastasis.

10.
Neoplasia ; 20(6): 621-631, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754071

RESUMO

Ovarian cancer, the most deadly gynecological malignancy in U.S. women, metastasizes uniquely, spreading through the peritoneal cavity and often generating widespread metastatic sites before diagnosis. The vast majority of ovarian cancer cases occur in women over 40 and the median age at diagnosis is 63. Additionally, elderly women receive poorer prognoses when diagnosed with ovarian cancer. Despite age being a significant risk factor for the development of this cancer, there are little published data which address the impact of aging on ovarian cancer metastasis. Here we report that the aged host is more susceptible to metastatic success using two murine syngeneic allograft models of ovarian cancer metastasis. This age-related increase in metastatic tumor burden corresponds with an increase in tumor infiltrating lymphocytes (TILs) in tumor-bearing mice and alteration of B cell-related pathways in gonadal adipose tissue. Based on this work, further studies elucidating the status of B cell TILs in mouse models of metastasis and human tumors in the context of aging are warranted.


Assuntos
Tecido Adiposo/patologia , Envelhecimento/patologia , Aloenxertos/patologia , Metástase Neoplásica/patologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Animais , Linhagem Celular , Feminino , Humanos , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Carga Tumoral/fisiologia , Adulto Jovem
11.
Cancer Lett ; 411: 74-81, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28964786

RESUMO

Ovarian cancer is the fifth leading cause of cancer deaths in U.S. women and the deadliest gynecologic malignancy. This lethality is largely due to the fact that most cases are diagnosed at metastatic stages of the disease when the prognosis is poor. Epidemiologic studies consistently demonstrate that parous women have a reduced risk of developing ovarian cancer, with a greater number of births affording greater protection; however little is known about the impact of parity on ovarian cancer metastasis. Here we report that multiparous mice are less susceptible to ovarian cancer metastasis in an age-matched syngeneic murine allograft model. Interferon pathways were found to be upregulated in healthy adipose tissue of multiparous mice, suggesting a possible mechanism for the multiparous-related protective effect against metastasis. This protective effect was found to be lost with age. Based on this work, future studies exploring therapeutic strategies which harness the multiparity-associated protective effect demonstrated here are warranted.


Assuntos
Tecido Adiposo/metabolismo , Interferons/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Paridade , Peritônio/metabolismo , Tecido Adiposo/patologia , Aloenxertos , Animais , Carcinoma Epitelial do Ovário , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/prevenção & controle , Neoplasias Peritoneais/secundário , Peritônio/patologia , Gravidez , Fatores de Risco
12.
Mol Cancer Ther ; 16(4): 601-613, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28069875

RESUMO

Studies with 15α-methoxypuupehenol (15α-MP), obtained from the extracts of Hyrtios species, identified putative targets that are associated with its antitumor effects against human glioblastoma and breast cancer. In the human glioblastoma (U251MG) or breast cancer (MDA-MB-231) cells, treatment with 15α-MP repressed pY705Stat3, pErk1/2, pS147CyclinB1, pY507Alk (anaplastic lymphoma kinase), and pY478ezrin levels and induced pS10merlin, without inhibiting pJAK2 (Janus kinase) or pAkt induction. 15α-MP treatment induced loss of viability of breast cancer (MDA-MB-231, MDA-MB-468) and glioblastoma (U251MG) lines and glioblastoma patient-derived xenograft cells (G22) that harbor aberrantly active Stat3, with only moderate or little effect on the human breast cancer, MCF7, colorectal adenocarcinoma Caco-2, normal human lung fibroblast, WI-38, or normal mouse embryonic fibroblast (MEF Stat3fl/fl) lines that do not harbor constitutively active Stat3 or the Stat3-null (Stat3-/-) mouse astrocytes. 15α-MP-treated U251MG cells have severely impaired F-actin organization and altered morphology, including the cells rounding up, and undergo apoptosis, compared with a moderate, reversible morphology change observed for similarly treated mouse astrocytes. Treatment further inhibited U251MG or MDA-MB-231 cell proliferation, anchorage-independent growth, colony formation, and migration in vitro while only moderately or weakly affecting MCF7 cells or normal mouse astrocytes. Oral gavage delivery of 15α-MP inhibited the growth of U251MG subcutaneous tumor xenografts in mice, associated with apoptosis in the treated tumor tissues. Results together suggest that the modulation of Stat3, CyclinB1, Alk, ezrin, merlin, and Erk1/2 functions contributes to the antitumor effects of 15α-MP against glioblastoma and breast cancer progression. Mol Cancer Ther; 16(4); 601-13. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sesquiterpenos/administração & dosagem , Animais , Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina B1/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Células MCF-7 , Camundongos , Fator de Transcrição STAT3/genética , Sesquiterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Med Chem ; 58(19): 7734-48, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26331426

RESUMO

We report that hirsutinolide series, 6, 7, 10, 11, 20, and 22, and the semisynthetic analogues, 30, 31, 33, and 36, inhibit constitutively active signal transducer and activator of transcription (Stat)3 and malignant glioma phenotype. A position 13 lipophilic ester group is required for activity. Molecular modeling and nuclear magnetic resonance structural analyses reveal direct hirsutinolide:Stat3 binding. One-hour treatment of cells with 6 and 22 also upregulated importin subunit α-2 levels and repressed translational activator GCN1, microtubule-associated protein (MAP)1B, thioredoxin reductase (TrxR)1 cytoplasmic isoform 3, glucose-6-phosphate 1-dehydrogenase isoform a, Hsp105, vimentin, and tumor necrosis factor α-induced protein (TNAP)2 expression. Active hirsutinolides inhibited anchorage-dependent and three-dimensional spheroid growth, survival, and migration of human glioma lines and glioma patients' tumor-derived xenograft cells harboring constitutively active Stat3. Oral gavage delivery of 6 or 22 inhibited human glioma tumor growth in subcutaneous mouse xenografts. The inhibition of Stat3 signaling represents part of the hirsutinolide-mediated mechanisms to induce antitumor effects.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Glioma/metabolismo , Glioma/patologia , Glucosefosfato Desidrogenase/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Tiorredoxina Redutase 1/metabolismo , Transativadores/metabolismo , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , alfa Carioferinas/metabolismo
14.
Nat Rev Drug Discov ; 12(8): 611-29, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23903221

RESUMO

The signal transducer and activator of transcription (STAT) proteins have important roles in biological processes. The abnormal activation of STAT signalling pathways is also implicated in many human diseases, including cancer, autoimmune diseases, rheumatoid arthritis, asthma and diabetes. Over a decade has passed since the first inhibitor of a STAT protein was reported and efforts to discover modulators of STAT signalling as therapeutics continue. This Review discusses the outcomes of the ongoing drug discovery research endeavours against STAT proteins, provides perspectives on new directions for accelerating the discovery of drug candidates, and highlights the noteworthy candidate therapeutics that have progressed to clinical trials.


Assuntos
Descoberta de Drogas/métodos , Terapia de Alvo Molecular/métodos , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Ensaios Clínicos como Assunto , Doença , Drogas em Investigação/química , Drogas em Investigação/farmacologia , Drogas em Investigação/uso terapêutico , Humanos , Modelos Moleculares , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
15.
Int J Mol Sci ; 14(3): 4762-82, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23449028

RESUMO

Ovarian cancer is the most lethal gynecological malignancy affecting American women. The gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), have been implicated as growth factors in ovarian cancer. In the present study, pathways activated by FSH and LH in normal ovarian surface epithelium (OSE) grown in their microenvironment were investigated. Gonadotropins increased proliferation in both three-dimensional (3D) ovarian organ culture and in a two-dimensional (2D) normal mouse cell line. A mouse cancer pathway qPCR array using mRNA collected from 3D organ cultures identified Akt as a transcriptionally upregulated target following stimulation with FSH, LH and the combination of FSH and LH. Activation of additional pathways, such as Birc5, Cdk2, Cdk4, and Cdkn2a identified in the 3D organ cultures, were validated by western blot using the 2D cell line. Akt and epidermal growth factor receptor (EGFR) inhibitors blocked gonadotropin-induced cell proliferation in 3D organ and 2D cell culture. OSE isolated from 3D organ cultures stimulated with LH or hydrogen peroxide initiated growth in soft agar. Hydrogen peroxide stimulated colonies were further enhanced when supplemented with FSH. LH colony formation and FSH promotion were blocked by Akt and EGFR inhibitors. These data suggest that the gonadotropins stimulate some of the same proliferative pathways in normal OSE that are activated in ovarian cancers.

16.
Anticancer Drugs ; 22(10): 978-85, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21878813

RESUMO

Ovarian cancer is the most lethal gynecological malignancy among US women. Paclitaxel/carboplatin is the current drug therapy used to treat ovarian cancer, but most women develop drug resistance and recurrence of the disease, necessitating alternative strategies for treatment. A possible molecular target for cancer therapy is glycogen synthase kinase 3ß (GSK3ß), a downstream kinase in the Wnt signaling pathway that is overexpressed in serous ovarian cancer. Novel maleimide-based GSK3ß inhibitors (GSK3ßi) were synthesized, selected, and tested in vitro using SKOV3 and OVCA432 serous ovarian cancer cell lines. From a panel of 10 inhibitors, GSK3ßi 9ING41 was found to be the most effective in vitro. 9ING41 induced apoptosis as indicated by 4',6-diamidino-2-phenylindole-positive nuclear condensation, poly (ADP-ribose) polymerase cleavage, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The mechanism for apoptosis was through caspase-3 cleavage. GSK3ßi upregulated phosphorylation of the inhibitory serine residue of GSK3ß in OVCA432 and SKOV3 cell lines and also inhibited phosphorylation of the downstream target glycogen synthase. An in-vivo xenograft study using SKOV3 cells demonstrated that tumor progression was hindered by 9ING41 in vivo. The maximum tolerated dose for 9ING41 was greater than 500 mg/kg in rats. Pharmacokinetic analysis showed 9ING41 to have a bioavailability of 4.5% and to be well distributed in tissues. Therefore, GSK3ß inhibitors alone or in combination with existing drugs may hinder the growth of serous ovarian cancers.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Animais , Disponibilidade Biológica , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacocinética , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Camundongos Nus , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Ratos Sprague-Dawley , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Endocr Relat Cancer ; 18(5): 627-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21813729

RESUMO

Ovarian cancer is the most lethal gynecological malignancy affecting American women. Current hypotheses concerning the etiology of ovarian cancer propose that a reduction in the lifetime number of ovulations decreases ovarian cancer risk. Advanced serous carcinoma shares several biomarkers with fallopian tube epithelial cells, suggesting that some forms of ovarian carcinoma may originate in the fallopian tube. Currently, the impact of ovulation on the tubal epithelium is unknown. In CD1 mice, ovulation did not increase tubal epithelial cell (TEC) proliferation as measured by bromodeoxyuridine incorporation and proliferating cell nuclear antigen staining as compared to unstimulated animals. In superovulated mice, an increase in the number of pro-inflammatory macrophages was detected in the oviduct. Ovulation also increased levels of phospho-γH2A.X in TEC, indicating that these cells were susceptible to double-strand DNA breakage following ovulation. To determine which components of ovulation contributed to DNA damage in the fallopian tube, an immortalized baboon TEC cell line and a three-dimensional organ culture system for mouse oviduct and baboon fallopian tubes were developed. TEC did not proliferate or display increased DNA damage in response to the gonadotropins or estradiol alone in vitro. Oxidative stress generated by treatment with hydrogen peroxide or macrophage-conditioned medium increased DNA damage in TEC in culture. Ovulation may impact the fallopian tube epithelium by generating DNA damage and stimulating macrophage infiltration but does not increase proliferation through gonadotropin signaling.


Assuntos
Cistadenocarcinoma Seroso/patologia , Tubas Uterinas/citologia , Neoplasias Ovarianas/patologia , Ovulação/fisiologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células , Dano ao DNA , Células Epiteliais/citologia , Estradiol/farmacologia , Feminino , Hormônio Foliculoestimulante/farmacologia , Imuno-Histoquímica , Hormônio Luteinizante/farmacologia , Camundongos , Microscopia de Fluorescência , Técnicas de Cultura de Órgãos/métodos , Papio
18.
J Vis Exp ; (52)2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21712801

RESUMO

Ovarian cancer is the fifth leading cause of cancer deaths in women and has a 63% mortality rate in the United States(1). The cell type of origin for ovarian cancers is still in question and might be either the ovarian surface epithelium (OSE) or the distal epithelium of the fallopian tube fimbriae(2,3). Culturing the normal cells as a primary culture in vitro will enable scientists to model specific changes that might lead to ovarian cancer in the distinct epithelium, thereby definitively determining the cell type of origin. This will allow development of more accurate biomarkers, animal models with tissue-specific gene changes, and better prevention strategies targeted to this disease. Maintaining normal cells in alginate hydrogels promotes short term in vitro culture of cells in their three-dimensional context and permits introduction of plasmid DNA, siRNA, and small molecules. By culturing organs in pieces that are derived from strategic cuts using a scalpel, several cultures from a single organ can be generated, increasing the number of experiments from a single animal. These cuts model aspects of ovulation leading to proliferation of the OSE, which is associated with ovarian cancer formation. Cell types such as the OSE that do not grow well on plastic surfaces can be cultured using this method and facilitate investigation into normal cellular processes or the earliest events in cancer formation(4). Alginate hydrogels can be used to support the growth of many types of tissues(5). Alginate is a linear polysaccharide composed of repeating units of ß-D-mannuronic acid and α-L-guluronic acid that can be crosslinked with calcium ions, resulting in a gentle gelling action that does not damage tissues(6,7). Like other three-dimensional cell culture matrices such as Matrigel, alginate provides mechanical support for tissues; however, proteins are not reactive with the alginate matrix, and therefore alginate functions as a synthetic extracellular matrix that does not initiate cell signaling(5). The alginate hydrogel floats in standard cell culture medium and supports the architecture of the tissue growth in vitro. A method is presented for the preparation, separation, and embedding of ovarian and oviductal organ pieces into alginate hydrogels, which can be maintained in culture for up to two weeks. The enzymatic release of cells for analysis of proteins and RNA samples from the organ culture is also described. Finally, the growth of primary cell types is possible without genetic immortalization from mice and permits investigators to use knockout and transgenic mice.


Assuntos
Alginatos/química , Hidrogéis/química , Técnicas de Cultura de Órgãos/métodos , Ovário/anatomia & histologia , Oviductos/anatomia & histologia , Animais , Feminino , Camundongos , Ovário/química , Ovário/ultraestrutura , Oviductos/química , Oviductos/ultraestrutura
19.
Endocrinology ; 150(8): 3921-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19423762

RESUMO

Ovarian cancers are primarily derived from a single layer of epithelial cells surrounding the ovary, the ovarian surface epithelium (OSE). Ovarian surface proliferation is associated with ovulation and has been suggested to play a role in ovarian surface transformation and cancer progression. Aspects of ovarian surface repair after ovulation include proliferation, migration, and surface regeneration. To study ovarian surface repair, an organ culture system was developed that supports the proliferation, encapsulation, and repair of an artificially wounded surface. Wounded mouse ovaries embedded into an alginate hydrogel matrix have normal OSE cells as demonstrated by expression of cytokeratin 8, vimentin, N-cadherin, and a lack of E-cadherin. Normal OSE cells began proliferating and migrating around wounded surfaces after 1 d of culture. Organ cultures were propagated in medium supplemented with BSA and fetal bovine serum to determine optimal growth conditions. BSA cultured organs had OSE that proliferated significantly more than controls until d 4, whereas fetal bovine serum cultured organs had significantly more surface area encapsulated by OSE. Overall, a three-dimensional ovarian organ culture supports the growth of normal OSE in response to artificial wounding and provides a novel system for investigating wound repair as it relates to the possible role of ovulation and ovarian cancer.


Assuntos
Técnicas de Cultura de Órgãos/métodos , Ovário/citologia , Alginatos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Ácido Glucurônico/farmacologia , Hemostáticos/farmacologia , Ácidos Hexurônicos/farmacologia , Imuno-Histoquímica , Camundongos , Ovário/efeitos dos fármacos , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA