Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38896029

RESUMO

Future climatic scenarios forecast increasingly frequent droughts that will pose substantial consequences on tree mortality. In light of this, drought-tolerant eucalypts have been propagated; however, the severity of these conditions will invoke adaptive responses, impacting the commercially valuable wood properties. To determine what mechanisms govern the wood anatomical adaptive response, highly controlled drought experiments were conducted in Eucalyptus grandis W. Hill ex Maiden, with the tree physiology and transcriptome closely monitored. In response to water deficit, E. grandis displays an isohydric stomatal response to conserve water and enable stem growth to continue, albeit at a reduced rate. Maintaining gaseous exchange is likely a critical short-term response that drives the formation of hydraulically safer xylem. For instance, the development of significantly smaller fibers and vessels was found to increase cellular density, thereby promoting drought tolerance through improved functional redundancy, as well as implosion and cavitation resistance. The transcriptome was explored to identify the molecular mechanisms responsible for controlling xylem cell size during prolonged water deficit. Downregulation of genes associated with cell wall remodeling and the biosynthesis of cellulose, hemicellulose and pectin appeared to coincide with a reduction in cellular enlargement during drought. Furthermore, transcript levels of NAC and MYB transcription factors, vital for cell wall component biosynthesis, were reduced, while those linked to lignification increased. The upregulation of EgCAD and various peroxidases under water deficit did not correlate with an increased lignin composition. However, with the elevated cellular density, a higher lignin content per xylem cross-sectional area was observed, potentially enhancing hydraulic safety. These results support the requirement for higher density, drought-adapted wood as a long-term adaptive response in E. grandis, which is largely influenced by the isohydric stomatal response coupled with cellular expansion-related molecular processes.


Assuntos
Secas , Eucalyptus , Água , Xilema , Eucalyptus/fisiologia , Eucalyptus/genética , Xilema/fisiologia , Xilema/metabolismo , Água/metabolismo , Água/fisiologia , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Tamanho Celular , Parede Celular/metabolismo , Madeira/fisiologia , Transcriptoma
2.
Plant Sci ; 340: 111970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163623

RESUMO

Quantitative wood anatomy is a subfield in dendrochronology that requires effective open-source image analysis tools. In this research, the bioimage analysis software QuPath (v0.4.4) is introduced as a candidate for accurately quantifying the cellular properties of the xylem in an automated manner. Additionally, the potential of QuPath to detect the transition of early- to latewood tracheids over the growing season was evaluated to assess a potential application in dendroecological studies. Various algorithms in QuPath were optimized to quantify different xylem cell types in Eucalyptus grandis and the transition of early- to latewood tracheids in Pinus radiata. These algorithms were coded into cell detection scripts for automatic quantification of stem microsections and compared to a manually curated method to assess the accuracy of the cell detections. The automatic cell detection approach, using QuPath, has been validated to be reproducible with an acceptable error when assessing fibers, vessels, early- and latewood tracheids. However, further optimization for parenchyma is still required. This proposed method developed in QuPath provides a scalable and accurate approach for quantifying anatomical features in stem microsections. With minor amendments to the detection and classification algorithms, this strategy is likely to be viable in other plant species.


Assuntos
Eucalyptus , Pinus , Madeira/anatomia & histologia , Xilema , Estações do Ano
3.
Plants (Basel) ; 12(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765366

RESUMO

Priming agents are plant defence-inducing compounds which can prompt a state of protection but may also aid in plant growth and interactions with beneficial microbes. The synthetic strigolactones (±)-GR24 and Nijmegen-1 were evaluated as potential priming agents for induced resistance against Botrytis cinerea in tobacco and grapevine plants. The growth and stress response profiles of B. cinerea to strigolactones were also investigated. Soil drench treatment with strigolactones induced resistance in greenhouse-grown tobacco plants and restricted lesion development. The mode of action appeared to function by priming redox-associated compounds to produce an anti-oxidant protective response for limiting the infection. The results obtained in the in vitro assays mirrored that of the greenhouse-grown plants. Exposure of B. cinerea to the strigolactones resulted in increased hyphal branching, with (±)-GR24 stimulating a stronger effect than Nijmegen-1 by affecting colony diameter and radial growth. An oxidative stress response was observed, with B. cinerea exhibiting increased ROS and SOD levels when grown with strigolactones. This study identified the application of strigolactones as potential priming agents to induce disease resistance in both tobacco and grapevine plants. In addition, strigolactones may alter the ROS homeostasis of B. cinerea, resulting in both morphological and physiological changes, thereby reducing virulence.

4.
PLoS One ; 17(8): e0270399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921281

RESUMO

We found evidence from two experiments that a simple set of gestural techniques can improve the experience of online meetings. Video conferencing technology has practical benefits, but psychological costs. It has allowed industry, education and social interactions to continue in some form during the covid-19 lockdowns. But it has left many users feeling fatigued and socially isolated, perhaps because the limitations of video conferencing disrupt users' ability to coordinate interactions and foster social affiliation. Video Meeting Signals (VMS™) is a simple technique that uses gestures to overcome some of these limitations. First, we carried out a randomised controlled trial with over 100 students, in which half underwent a short training session in VMS. All participants rated their subjective experience of two weekly seminars, and transcripts were objectively coded for the valence of language used. Compared to controls, students with VMS training rated their personal experience, their feelings toward their seminar group, and their perceived learning outcomes as significantly higher. Also, they were more likely to use positive language and less likely to use negative language. A second, larger experiment replicated the first, and added a condition where groups were given a version of the VMS training but taught to use emoji response buttons rather than gestures to signal the same information. The emoji-trained groups did not experience the same improvement as the VMS groups. By exploiting the specific benefits of gestural communication, VMS has great potential to overcome the psychological problems of group video meetings.


Assuntos
COVID-19 , Meios de Comunicação , Controle de Doenças Transmissíveis , Gestos , Humanos , Comunicação por Videoconferência
5.
Plants (Basel) ; 9(8)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785013

RESUMO

AIMS: The aim of this study was to assess the effect of BC204 as a plant biostimulant on Arabidopsis thaliana plants under normal and NaCl-stressed conditions. METHODS: For this study, ex vitro and in vitro growth experiments were conducted to assess the effect of both NaCl and BC204 on basic physiological parameters such as biomass, chlorophyll, proline, malondialdehyde, stomatal conductivity, Fv/Fm and the expression of four NaCl-responsive genes. RESULTS: This study provides preliminary evidence that BC204 mitigates salt stress in Arabidopsis thaliana. BC204 treatment increased chlorophyll content, fresh and dry weights, whilst reducing proline, anthocyanin and malondialdehyde content in the presence of 10 dS·m-1 electroconductivity (EC) salt stress. Stomatal conductivity was also reduced by BC204 and NaCl in source leaves. In addition, BC204 had a significant effect on the expression of salinity-related genes, stimulating the expression of salinity-related genes RD29A and SOS1 independently of NaCl-stress. CONCLUSIONS: BC204 stimulated plant growth under normal growth conditions by increasing above-ground shoot tissue and root and shoot growth in vitro. BC204 also increased chlorophyll content while reducing stomatal conductivity. BC204 furthermore mitigated moderate to severe salt stress (10-20 dS·m-1) in A. thaliana. Under salt stress conditions, BC204 reduced the levels of proline, anthocyanin and malondialdehyde. The exact mechanism by which this occurs is unknown, but the results in this study suggest that BC204 may act as a priming agent, stimulating the expression of genes such as SOS1 and RD29A.

6.
Front Plant Sci ; 10: 73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804964

RESUMO

Virgilia divaricata is a tree legume that grows in the Cape Floristic Region (CFA) in poor nutrient soils. A comparison between high and low phosphate growth conditions between roots and nodules was conducted and evaluated for the plants ability to cope under low phosphate stress conditions in V. divaricata. We proved that the plant copes with low phosphate stress through an increased allocation of resources, reliance on BNF and enhanced enzyme activity, especially PEPC. Nodules had a lower percentage decline in P compared to roots to uphold its metabolic functions. These strategies partly explain how V. divaricata can sustain growth despite LP conditions. Although the number of nodules declined with LP, their biomass remained unchanged in spite of a plant decline in dry weight. This is achieved via the high efficiency of BNF under P stress. During LP, nodules had a lower % decline at 34% compared to the roots at 88%. We attribute this behavior to P conservation strategies in LP nodules that imply an increase in a metabolic bypass that operates at the PEP branch point in glycolysis. The enhanced activities of nodule PEPC, MDH, and ME, whilst PK declines, suggests that under LP conditions an adenylate bypass was in operation either to synthesize more organic acids or to mediate pyruvate via a non-adenylate requiring metabolic route. Both possibilities represent a P-stress adaptation route and this is the first report of its kind for legume trees that are indigenous to low P, acid soils. Although BNF declined by a small percentage during LP, this P conservation was evident in the unchanged BNF efficiency per weight, and the increase in BNF efficiency per mol of P. It appears that legumes that are indigenous to acid soils, may be able to continue their reliance on BNF via increased allocation to nodules and also due to increase their efficiency for BNF on a P basis, owing to P-saving mechanisms such as the organic acid routes.

7.
New Phytol ; 219(2): 743-756, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29781136

RESUMO

Strigolactones (SLs) are key hormonal regulators of flowering plant development and are widely distributed amongst streptophytes. In Arabidopsis, SLs signal via the F-box protein MORE AXILLARY GROWTH2 (MAX2), affecting multiple aspects of development including shoot branching, root architecture and drought tolerance. Previous characterization of a Physcomitrella patens moss mutant with defective SL synthesis supports an ancient role for SLs in land plants, but the origin and evolution of signalling pathway components are unknown. Here we investigate the function of a moss homologue of MAX2, PpMAX2, and characterize its role in SL signalling pathway evolution by genetic analysis. We report that the moss Ppmax2 mutant shows very distinct phenotypes from the moss SL-deficient mutant. In addition, the Ppmax2 mutant remains sensitive to SLs, showing a clear transcriptional SL response in dark conditions, and the response to red light is also altered. These data suggest divergent evolutionary trajectories for SL signalling pathway evolution in mosses and vascular plants. In P. patens, the primary roles for MAX2 are in photomorphogenesis and moss early development rather than in SL response, which may require other, as yet unidentified, factors.


Assuntos
Bryopsida/metabolismo , Proteínas F-Box/metabolismo , Lactonas/metabolismo , Luz , Morfogênese/efeitos da radiação , Proteínas de Plantas/metabolismo , Transdução de Sinais , Bryopsida/genética , Bryopsida/efeitos da radiação , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Epistasia Genética/efeitos dos fármacos , Epistasia Genética/efeitos da radiação , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Lactonas/farmacologia , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Mutação/genética , Fenótipo , Proteínas de Plantas/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Homologia de Sequência de Aminoácidos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação
8.
Planta ; 248(2): 477-488, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29777364

RESUMO

MAIN CONCLUSION: Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Flavinas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinorhizobium meliloti/genética , Acetatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Biomassa , Divisão Celular/efeitos dos fármacos , Crescimento Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Clorofila/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Flavinas/genética , Flavinas/metabolismo , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
9.
Front Plant Sci ; 3: 120, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701462

RESUMO

Symbiosis involves responses that maintain the plant host and symbiotic partner's genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus) and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus) or Glomus intraradices/G. mossea (for tomato). It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato.

10.
J Plant Physiol ; 164(12): 1612-25, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17360069

RESUMO

Endogenous embryo factors, which act mainly in the radicle, prevent germination in Tagetes minuta at high temperatures. These factors act to prevent cell elongation, which is critical for radicle protrusion under optimal conditions. Once the radicle has emerged both cell elongation and cell division are required for post-germination growth. Germination can be induced at high temperatures by fusicoccin, which rapidly stimulates cell elongation. In addition, priming seeds at 25 degrees C on polyethylene glycol (PEG) 6000 and mannitol could also induce germination on water at 36 degrees C, indicating that priming prevents radicle protrusion at a point subsequent to the point of control in thermoinhibited achenes. Flow cytometry studies revealed that DNA synthesis occurs during thermoinhibition and the inhibition of DNA synthesis during this process inhibits subsequent germination on water under optimal conditions, suggesting a protective role for DNA synthesis in thermoinhibited achenes of T. minuta.


Assuntos
Divisão Celular , Raízes de Plantas/citologia , Sementes/citologia , Tagetes/citologia , Temperatura , Divisão Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Tamanho Celular/efeitos dos fármacos , DNA de Plantas/análise , Etilenos/farmacologia , Germinação/efeitos dos fármacos , Glicosídeos/farmacologia , Raízes de Plantas/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , Piridonas/farmacologia , Sementes/efeitos dos fármacos , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Tagetes/efeitos dos fármacos , Tagetes/enzimologia
11.
J Plant Physiol ; 162(11): 1270-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16323279

RESUMO

Thermoinhibition in Tagetes minuta achenes is tightly and rapidly regulated with regard to its imposition and release, with both processes occurring within 2-3h. Germination at high temperatures is almost exclusively regulated by the embryo, while the pericarp appears to play only a minor role. Thermoinhibition in T. minuta could not be alleviated by any single plant growth regulator application, but a combination of treatments that both reduced ABA levels and increased ethylene levels were able to restore germination at supraoptimal temperatures. This suggests a role for both ethylene and ABA in the imposition of thermoinhibition in this species.


Assuntos
Tagetes/fisiologia , Temperatura , Ácido Abscísico/metabolismo , Germinação , Cinética , Sementes/fisiologia , Tagetes/embriologia , Tagetes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA