RESUMO
Environmental pollutants capable of interfering with the thyroid hormone (TH) system increasingly raise concern for both human and environmental health. Recently, resorcinol has received attention as a compound of concern due to its endocrine disrupting properties. It is a known inhibitor of thyroperoxidase (TPO), an enzyme required in TH synthesis, and therapeutic use of resorcinol exposure has led to hypothyroidism in humans. There is limited evidence concerning ecotoxicologically relevant effects of resorcinol in fish. A set of adverse outcome pathways (AOPs) has recently been developed linking thyroid hormone system disruption (THSD) to impaired swim bladder inflation and eye development in fish. In the present study, these AOPs were used to provide the background for testing potential THSD effects of resorcinol in zebrafish eleutheroembryos. We exposed zebrafish eleutheroembryos to resorcinol and assessed TH levels, swim bladder inflation and eye morphology. As a TPO inhibitor, resorcinol is expected to affect TH levels and eye morphology but not swim bladder inflation during embryonic development. Indeed, thyroxine (T4) levels were significantly decreased following resorcinol exposure. In contrast to our hypothesis, swim bladder inflation was impaired at 5 days post fertilization (dpf) and no effects on eye morphology were detected. Therefore, in vitro assays were performed to identify potential additional thyroid hormone system disruption-related mechanisms through which resorcinol may act. Two new mechanisms were identified: TH receptor (TR) antagonism and transthyretin (TTR) binding inhibition. Both of these mechanisms can plausibly be linked to impaired swim bladder inflation and could, therefore, explain the observed effect. Overall, our study contributes to the knowledge of the THSD potential of resorcinol both in vivo in the zebrafish model as well as in vitro.
Assuntos
Disruptores Endócrinos , Resorcinóis , Hormônios Tireóideos , Peixe-Zebra , Animais , Resorcinóis/toxicidade , Disruptores Endócrinos/toxicidade , Hormônios Tireóideos/metabolismo , Poluentes Químicos da Água/toxicidade , Sacos Aéreos/efeitos dos fármacos , Olho/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , TiroxinaRESUMO
Disruption of the thyroid hormone (TH) system is connected with diverse adverse health outcomes in wildlife and humans. It is crucial to develop and validate suitable in vitro assays capable of measuring the disruption of the thyroid hormone (TH) system. These assays are also essential to comply with the 3R principles, aiming to replace the ex vivo tests often utilised in the chemical assessment. We compared the two commonly used assays applicable for high throughput screening [Luminol and Amplex UltraRed (AUR)] for the assessment of inhibition of thyroid peroxidase (TPO, a crucial enzyme in TH synthesis) using several cell lines and 21 compounds from different use categories. As the investigated cell lines derived from human and rat thyroid showed low or undetectable TPO expression, we developed a series of novel cell lines overexpressing human TPO protein. The HEK-TPOA7 model was prioritised for further research based on the high and stable TPO gene and protein expression. Notably, the Luminol assay detected significant peroxidase activity and signal inhibition even in Nthy-ori 3-1 and HEK293T cell lines without TPO expression, revealing its lack of specificity. Conversely, the AUR assay was specific to TPO activity. Nevertheless, despite the different specificity, both assays identified similar peroxidation inhibitors. Over half of the tested chemicals with diverse structures and from different use groups caused TPO inhibition, including some widespread environmental contaminants suggesting a potential impact of environmental chemicals on TH synthesis. Furthermore, in silico SeqAPASS analysis confirmed the high similarity of human TPO across mammals and other vertebrate classes, suggesting the applicability of HEK-TPOA7 model findings to other vertebrates.
Assuntos
Iodeto Peroxidase , Iodeto Peroxidase/antagonistas & inibidores , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/genética , Humanos , Animais , Ratos , Células HEK293 , Luminol , Ensaios de Triagem em Larga Escala/métodos , Oxazinas , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Linhagem Celular , Proteínas de Ligação ao Ferro/metabolismo , Autoantígenos/metabolismo , Disruptores Endócrinos/toxicidadeRESUMO
Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.
Assuntos
Exposição Ambiental , Expossoma , Humanos , Biologia MolecularRESUMO
Information on the indoor environment as a source of exposure with potential adverse health effects is mostly limited to a few pollutant groups and indoor types. This study provides a comprehensive toxicological profile of chemical mixtures associated with dust from various types of indoor environments, namely cars, houses, prefabricated apartments, kindergartens, offices, public spaces, and schools. Organic extracts of two different polarities and bioaccessible extracts mimicking the gastrointestinal conditions were prepared from two different particle size fractions of dust. These extracts were tested on a battery of human cell-based bioassays to assess endocrine disrupting potentials. Furthermore, 155 chemicals from different pollutant groups were measured and their relevance for the bioactivity was determined using concentration addition modelling. The exhaustive and bioaccessible extracts of dust from the different microenvironments interfered with aryl hydrocarbon receptor, estrogen, androgen, glucocorticoid, and thyroid hormone (TH) receptor signalling, and with TH transport. Noteably, bioaccessible extracts from offices and public spaces showed higher estrogenic effects than the organic solvent extracts. 114 of the 155 targeted chemicals were detectable, but the observed bioactivity could be only marginally explained by the detected chemicals. Diverse toxicity patterns across different microenvironments that people inhabit throughout their lifetime indicate potential health and developmental risks, especially for children. Limited data on the endocrine disrupting potency of relevant chemical classes, especially those deployed as replacements for legacy contaminants, requires further study.
Assuntos
Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Criança , Humanos , Poeira/análise , Sistema Endócrino , Estrogênios , Androgênios , Poluição do Ar em Ambientes Fechados/análiseRESUMO
Cyanobacterial blooms are increasing in frequency and intensity globally, and impacting recreational waters as well as waters used for drinking water provisioning. They are sources of bioactive metabolites including retinoids and the neurotoxin anatoxin-a. Here, we investigated the effects of anatoxin-a on a differentiating in vitro human neural stem cell model previously characterised with retinoic acids. Effects on protein and gene expression upon exposure for 9 or 18 days to anatoxin-a alone or in co-exposure with all-trans retinoic acid were evaluated using a panel of neural and glial differentiation biomarkers. Anatoxin-a did not cause distinct developmental neurotoxicity alone, or in co-exposure with retinoic acid. However, in line with its excitotoxicity, in co-exposure with 200 nM all-trans retinoic acid it reduced the differentiation of acetylcholinergic neuron subtypes in the culture at 1000 nM (highest tested concentration). While this could have substantial functional implications for the developing nervous system, there is no indication for developmental neurotoxicity beyond its (excito-)toxicity to acetylcholinergic neurons, which only occurred in co-exposure to all-trans retinoic acid.
Assuntos
Cianobactérias , Síndromes Neurotóxicas , Tropanos , Humanos , Tretinoína/toxicidade , Toxinas de Cianobactérias , Retinoides/metabolismo , Síndromes Neurotóxicas/etiologia , Expressão GênicaRESUMO
Some freshwater phytoplankton species have been suggested to produce estrogenic compounds in concentrations which could cause adverse effects to aquatic biota, while other studies showed no estrogenic effects after exposure to phytoplankton extracts or pointed out possible sources of the overestimation of the estrogenic activity. This study aimed to clarify these research inconsistencies by investigating estrogenicity of biomass extracts from both environmental freshwater blooms and laboratory cyanobacterial and algae cultures by in vitro reporter bioassay. Biomasses of 8 cyanobacterial and 3 algal species from 7 taxonomic orders were extracted and tested. Next to this, samples of environmental water blooms collected from 8 independent water bodies dominated by phytoplankton species previously assessed as laboratory cultures were tested. The results showed undetectable or low estrogenicity of both freshwater blooms and laboratory cultures with E2 equivalent concentration (EEQ) in a range from LOQ up to 4.5 ng EEQ/g of dry mass. Moreover, the co-exposure of biomass extracts with environmentally relevant concentration of model estrogen (steroid hormone 17ß-estradiol; E2), commonly occurring in surface waters, showed simple additive interaction. However, some of the biomass extracts elicited partially anti-estrogenic effects in co-exposure with higher E2 concentration. In conclusion, our study documents undetectable or relatively low estrogenic potential of biomass extracts from both environmental freshwater blooms and studied laboratory cultured cyanobacterial and algae species. Nevertheless, in case of very high-density water blooms, even this low estrogenicity (detected for two cyanobacterial species) could lead to EEQ content in biomass reaching effect-based trigger values indicating potential risk, if recalculated per water volume at field sites. However, these levels would not occur in water under realistic environmental scenarios and the potential estrogenic effects would be most probably minor compared to other toxic effects caused by massive freshwater blooms of such high densities.
Assuntos
Cianobactérias , Estrogênios , Estrogênios/toxicidade , Estrogênios/análise , Água , Estradiol/toxicidade , Fitoplâncton , EstronaRESUMO
Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies.
Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Antagonistas de Androgênios , Ecotoxicologia , Estrona , Rios/químicaRESUMO
Cyanobacterial blooms are known sources of environmentally-occurring retinoid compounds, including all-trans and 9-cis retinoic acids (RAs). The developmental hazard for aquatic organisms has been described, while the implications for human health hazard assessment are not yet sufficiently characterized. Here, we employ a human neural stem cell model that can differentiate in vitro into a mixed culture of neurons and glia. Cells were exposed to non-cytotoxic 8-1000 nM all-trans or 9-cis RA for 9-18 days (DIV13 and DIV22, respectively). Impact on biomarkers was analyzed on gene expression (RT-qPCR) and protein level (western blot and proteomics) at both time points; network patterning (immunofluorescence) on DIV22. RA exposure significantly concentration-dependently increased gene expression of retinoic acid receptors and the metabolizing enzyme CYP26A1, confirming the chemical-specific response of the model. Expression of thyroid hormone signaling-related genes remained mostly unchanged. Markers of neural progenitors/stem cells (PAX6, SOX1, SOX2, NESTIN) were decreased with increasing RA concentrations, though a basal population remained. Neural markers (DCX, TUJ1, MAP2, NeuN, SYP) remained unchanged or were decreased at high concentrations (200-1000 nM). Conversely, (astro-)glial marker S100ß was increased concentration-dependently on DIV22. Together, the biomarker analysis indicates an RA-dependent promotion of glial cell fates over neural differentiation, despite the increased abundance of neural protein biomarkers during differentiation. Interestingly, RA exposure induced substantial changes to the cell culture morphology: while low concentrations resulted in a network-like differentiation pattern, high concentrations (200-1000 nM RA) almost completely prevented such network patterning. After functional confirmation for implications in network function, such morphological features could present a proxy for network formation assessment, an apical key event in (neuro-)developmental Adverse Outcome Pathways. The described application of a human in vitro model for (developmental) neurotoxicity to emerging environmentally-relevant retinoids contributes to the evidence-base for the use of differentiating human in vitro models for human health hazard and risk assessment.
Assuntos
Alitretinoína , Células-Tronco Neurais , Tretinoína , Humanos , Alitretinoína/toxicidade , Diferenciação Celular , Células-Tronco Neurais/efeitos dos fármacos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Retinoides/farmacologia , Tretinoína/toxicidadeRESUMO
While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.
Assuntos
Rotas de Resultados Adversos , Humanos , Medição de Risco/métodosRESUMO
Although information about the occurrence and distribution of retinoids in the environment is scarce, cyanobacterial water blooms have been identified as a significant source of these small molecules. Despite the confirmed presence of retinoids in the freshwater blooms dominated by cyanobacteria and their described teratogenic effects, reliable identification of retinoid producers and the mechanism of their biosynthesis is missing. In this study, the cultures of several taxonomically diverse species of axenic cyanobacteria were confirmed as significant producers of retinoid-like compounds. The consequent bioinformatic analysis suggested that the enzymatic background required for the biosynthesis of all-trans retinoic acid from retinal is not present across phylum Cyanobacteria. However, we demonstrated that retinal conversion into other retinoids can be mediated non-enzymatically by free radical oxidation, which leads to the production of retinoids widely detected in cyanobacteria and environmental water blooms, such as all-trans retinoic acid or all-trans 5,6epoxy retinoic acid. Importantly, the production of these metabolites by cyanobacteria in association with the mass development of water blooms can lead to adverse impacts in aquatic ecosystems regarding the described teratogenicity of retinoids. Moreover, our finding that retinal can be non-enzymatically converted into more bioactive retinoids, also in water, and out of the cells, increases the environmental significance of this process.
Assuntos
Cianobactérias , Teratogênicos , Cianobactérias/metabolismo , Ecossistema , Retinoides/análise , Retinoides/metabolismo , Retinoides/toxicidade , Teratogênicos/toxicidade , Tretinoína/toxicidade , Água/metabolismoRESUMO
Wastewater treatment plants (WWTPs) are the primary source of micropollutants in aquatic ecosystems. Many micropollutants tend to bind to sediments and persist until remobilizion by bioturbation or flood events. Advanced effluent treatment by ozonation has been proven to eliminate most micropollutants. The present study characterizes sediments' toxic potential regarding zebrafish embryo development, which highly complex nervous system is vulnerable to exposure to neurotoxic substances. Furthermore, behavioral changes can be induced even at low pollutant concentrations and do not cause acute toxicity. The study area includes stretches of the main waterbody, the Wurm River (sampling sites W1-W5), and its tributary the Haarbach River (sampling sites H1, and H2) in North-Rhine Westphalia, Germany. Both waterbodies serve as recipients of WWTPs' effluents. The effluent entering the Haarbach River is conventionally treated, while the Wurm River receives ozonated effluent from the Aachen-Soers WWTP. Seven sampling sites up- and downstream of the WWTPs were investigated in June of two subsequent years. The first sampling campaign in 2017 was characterized by prolonged dry weather. The second sampling campaign in 2018 occurred after prolonged rain events and the release of the rainwater overflow basin. Direct exposure of zebrafish embryos to native sediments using the sediment contact test represented an ecologically realistic scenario and showed no acute sublethal effects. Exposure of the zebrafish embryo to freeze-dried sediments representing the ecotoxicological status of sediments during flood events unfolded acute sublethal toxicity. Behavioral studies with zebrafish larvae were an essential part of environmental neurotoxicity testing. Zebrafish larvae exposed to sediments' concentrations causing no acute effects led to behavioral changes signalizing neurotoxic substances in sediments. Polyaromatic hydrocarbons, polychlorinated biphenyls, and nitroaromatic compounds were identified as potential toxicity drivers, whereby the rainwater overflow basin served as a possible source of pollution. Mixture toxicity, effect-directed analysis, and further sediment monitoring are needed.
Assuntos
Ozônio , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Ecossistema , Sedimentos Geológicos , Larva , Ozônio/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Tempo (Meteorologia) , Peixe-ZebraRESUMO
Stagnant freshwaters can be affected by anthropogenic pollution and eutrophication that leads to massive growth of cyanobacteria and microalgae forming complex water blooms. These can produce various types of bioactive compounds, some of which may cause embryotoxicity, teratogenicity, endocrine disruption and impair animal or human health. This study focused on potential co-occurrence of estrogenic and retinoid-like activities in diverse stagnant freshwaters affected by phytoplankton blooms with varying taxonomic composition. Samples of phytoplankton bloom biomass and its surrounding water were collected from 17 independent stagnant water bodies in the Czech Republic and Hungary. Total estrogenic equivalents (EEQ) of the most potent samples reached up to 4.9 ng·g-1 dry mass (dm) of biomass extract and 2.99 ng·L-1 in surrounding water. Retinoic acid equivalent (REQ) measured by in vitro assay reached up to 3043 ng·g-1 dm in phytoplankton biomass and 1202 ng·L-1in surrounding water. Retinoid-like and estrogenic activities at some sites exceeded their PNEC and effect-based trigger values, respectively. The observed effects were not associated with any particular species of cyanobacteria or algae dominating the water blooms nor related to phytoplankton density. We found that taxonomically diverse phytoplankton communities can produce and release retinoid-like compounds to surrounding water, while estrogenic potency is likely related to estrogens of anthropogenic origin adsorbed to phytoplankton biomass. Retinoids occurring in water blooms are ubiquitous signalling molecules, which can affect development and neurogenesis. Selected water bloom samples (both water and biomass extracts) with retinoid-like activity caused effects on neurodifferentiation in vitro corresponding to those of equivalent all-trans-retinoic acid concentrations. Co-occurrence of estrogenic and retinoid-like activities in stagnant water bodies as well as the potential of compounds produced by water blooms to interfere with neural differentiation should be considered in the assessment of risks associated with water blooms, which can comprise complex mixtures of natural and anthropogenic bioactive compounds.
Assuntos
Cianobactérias , Retinoides , Animais , Humanos , Água , Estrona , Fitoplâncton , Eutrofização , Tretinoína , Estrogênios/análise , Misturas Complexas , Extratos VegetaisRESUMO
Retinoids are newly detected compounds in aquatic ecosystems associated with cyanobacterial water blooms. Their potential health risks are only scarcely described despite numerous detections of all-trans retinoic acid (ATRA) and its derivatives in the environment. Besides the known teratogen ATRA there is only little or no information about their potency and namely their effects in vivo. We characterize ATRA and 8 other retinoids reported to occur in the environment for their bioactivity and teratogenicity using four in vitro reporter gene assays and zebrafish (Danio rerio) embryotoxicity assay. Our results document the ability of these compounds to interfere with retinoid signalling and cause teratogenicity at environmentally relevant levels with EC50 values at nM (hundreds of ng/L) levels and teratogenic indexes ranging from 2.8 (9cis retinoic acid) to 15.8 (retinal). The relative potency of individual compounds for teratogenicity ranged from 0.059 (retinal) to 0.96 (5,6-epoxy ATRA) when compared to ATRA. An environmentally relevant mixture of retinoids was tested showing good predictability of teratogenicity from the in vitro activities and additive toxicity of the mixture. The high teratogenicity of the newly described compounds associated with cyanobacteria presents a concern for developmental stages due to high conservation of the retinoid signalling across vertebrates.
Assuntos
Cianobactérias , Microcystis , Poluentes Químicos da Água , Animais , Ecossistema , Retinoides/toxicidade , Teratogênicos/toxicidade , Tretinoína/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genéticaRESUMO
Aquatic biotests are important tools targeting various effects in ecotoxicology, including endocrine disruption. Unintentional exposure of bioassay organisms to endocrine disruptors during cultivation or testing may interfere with assessed endpoints. We illustrate this issue on the example of laboratory phytoplankton cultivation, where possible sources of estrogenic compounds have been revealed. Fifty-four blank samples (water and fresh or cultivated growth media) were assessed by in vitro biotests for their estrogenicity, and major known estrogens originating from plastic materials, bisphenol A and alkylphenols, were analyzed in selected samples. The samples of freshly prepared growth medium elicited weak estrogenic response in bioassays and some samples of the aerated media caused responses even above the 50% of maximum of the reference compound (17ß-estradiol, E2), while the samples from diverse laboratory water sources did not show significant estrogenic activity. The results identified substances contained in the growth medium as minor but reproducible contributors to estrogenicity in the cultivations. Sporadic but significant effects (up to 4.9 ng E2 equivalent/L) can be ascribed to compounds released from the used plastic materials during aeration of the cultivations. The potential sources of unintentional exposure to estrogenic compounds need to be considered in aquatic cultivations and biotests, since they could impact their outcomes, especially in arrangements assessing reproduction or whole life cycle biotests, or production of bioactive compounds by phytoplankton. The findings emphasize the necessity to assess all relevant blanks, ideally by sensitive high throughput in vitro assays that reflect also unknown pollutants and minimize all potential sources of background contamination. In vitro assays show very good applicability for this purpose since they enable to screen for any background estrogenicity of the used media and materials without the need of analyzing individual compounds, which often might not be known.
Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Estrogênios/análise , Estrogênios/toxicidade , Fitoplâncton , Plásticos , Água , Poluentes Químicos da Água/toxicidadeRESUMO
The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science-policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science-policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science-policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.
RESUMO
Pollution of indoor environment, where people spend much of their time, comprises complex mixtures of compounds with vastly understudied hazard potential. This study examined several important specific toxic effects and pollutant levels (177 compounds) of indoor samples (air gas phase, PM10 and dust) from different microenvironments after two extractions with focus on their gas/particle/dust distribution and polarity. The endocrine disruptive (ED) potential was assessed by human cell-based in vitro bioassays addressing anti-/estrogenicity, anti-/androgenicity, aryl hydrocarbon, thyroid and peroxisome proliferator-activated receptor-mediated activities. Potential toxicity to respiratory tract tissue was assessed using human bronchial cell line. The toxicological analyses pointed out the relevance of both inhalation and ingestion exposure, with significant effects detected after exposure to extracts from all three studied matrices with distinct gas/particle distribution patterns. Chemical analyses document the high complexity of indoor pollutant mixtures with greatest levels of phthalates, their emerging alternatives, and PAHs in dust. Despite the detection of up to 108 chemicals, effects were explained only to low extent. This emphasizes data gaps regarding ED potencies of many detected abundant indoor contaminants, but also potential presence of other unidentified ED compounds. The omnipresent ED potentials in indoor environment rise concern regarding associated human health risk.
Assuntos
Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análiseRESUMO
Water bloom-forming cyanobacteria have a severe impact on freshwater quality. Although some cyanobacterial toxins such as microcystins have been studied extensively, other toxins like anatoxin-a (ATX) and their structural analogs - as well as cyanobacterial taxa producing these toxins remain to be explored in detail. The present study investigated levels of ATX, CYN and their homologs along with the occurrence of anaC and cyrJ genes in water blooms in 16 sites in the Czech Republic that were pre-selected concerning the presence of potential toxin producers. Besides, we also studied toxins and genes in a series of strains available in our laboratories. ATX and its congener HATX were detected in 5 natural biomass samples from the Czech Republic (maximum concentration 2.8 micrograms per gram d.w.). Interestingly, the anaC gene coding for ATX production was not detected in any of these toxin-positive biomass samples. The concentrations of ATX congeners in cyanobacterial laboratory strains were about 10-times higher than those of the original ATX, which calls for further research addressing levels and hazards of ATX analogs. Regarding the CYN and 7-deoxyCYN (other CYN congeners were not analyzed in this study) - these toxins were identified in a single small pond in the Czech Republic at concentrations 4.3 and 2.7 micrograms per gram of biomass d.w., respectively (corresponded to dissolved concentrations higher than 1 microgram per liter). The CYN-positive sample was dominated by CYN-producing taxa Raphidiopsis (basionym Cylindrospermopsis) and Cuspidothrix. We also confirmed the presence of a specific cyrJ gene in this natural bloom sample. To our knowledge, this is the first study pointing to Raphidiopsis (Cylindrospermopsis) and Cuspidothrix as producers of CYN in Europe. This observation calls for further research because of their increasing occurrence in (Central) Europe along with the global change. The present study demonstrates the importance of using combined (taxonomical, analytical, and molecular) approaches in the assessment of hazardous cyanobacteria and their toxins in freshwaters.
Assuntos
Alcaloides , Tropanos , Toxinas de Cianobactérias , República TchecaRESUMO
Some phytoplankton species were shown to produce teratogenic retinoids. This study assessed the variability in the extracellular production of compounds with retinoid-like activity for 50 independent cultivations of wide spectra of species including 12 cyanobacteria (15 strains) and 4 algae of different orders. Extracellular retinoid-like activity was detected for repeated cultivations of six cyanobacteria. The results were consistent for some species including Microcystis aeruginosa and Aphanizomenon gracile. The detected retinoid-like activities ranged from below the limit of quantification of 16 ng/L to over 6 µg all-trans retinoic acid (ATRA) equivalent/L. Nontargeted virtual fractionation together with suspect screening approach enabled to identify some retinoid-like compounds in exudates, including ATRA, 9/13-cis retinoic acid, all-trans 5,6-epoxy retinoic acid, 4keto-ATRA, 4keto-retinal, 4hydroxy-ATRA, and retinal. Most of them were for the first time repeatedly detected in exudates of all studied algae (at ng/L levels) and cyanobacteria. Their relative potencies ranged from 0.018 (retinal) to 1 compared to ATRA. They accounted for less than 0.1-50% of total detected retinoid-like activity. The high detected activities and concentrations of retinoids in some samples and their direct accessibility from exudates document potential risk of developmental toxicity for organisms in proximity of massive water blooms.
Assuntos
Aphanizomenon , Microcystis , Fitoplâncton , RetinoidesRESUMO
In the last decade, it has become evident that complex mixtures of cyanobacterial bioactive substances, simultaneously present in blooms, often exert adverse effects that are different from those of pure cyanotoxins, and awareness has been raised on the importance of studying complex mixtures and chemical interactions. We aimed to investigate cytotoxic and genotoxic effects of complex extracts from laboratory cultures of cyanobacterial species from different orders (Cylindrospermopsis raciborskii, Aphanizomenon gracile, Microcystis aeruginosa, M. viridis, M. ichtyoblabe, Planktothrix agardhii, Limnothrix redekei) and algae (Desmodesmus quadricauda), and examine possible relationships between the observed effects and toxin and retinoic acid (RA) content in the extracts. The cytotoxic and genotoxic effects of the extracts were studied in the human hepatocellular carcinoma HepG2 cell line, using the MTT assay, and the comet and cytokinesis-block micronucleus (cytome) assays, respectively. Liquid chromatography electrospray ionization mass spectrometry (LC/ESI-MS) was used to detect toxins (microcystins (MC-LR, MC-RR, MC-YR) and cylindrospermopsin) and RAs (ATRA and 9cis-RA) in the extracts. Six out of eight extracts were cytotoxic (0.04-2 mgDM/mL), and five induced DNA strand breaks at non-cytotoxic concentrations (0.2-2 mgDM/mL). The extracts with genotoxic activity also had the highest content of RAs and there was a linear association between RA content and genotoxicity, indicating their possible involvement; however further research is needed to identify and confirm the compounds involved and to elucidate possible genotoxic effects of RAs.
Assuntos
Alcaloides/toxicidade , Clorófitas/metabolismo , Cianobactérias/metabolismo , Dano ao DNA , Microcistinas/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Tretinoína/toxicidade , Alcaloides/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Ensaio Cometa , Toxinas de Cianobactérias , Células Hep G2 , Humanos , Microcistinas/isolamento & purificação , Testes para Micronúcleos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Tretinoína/isolamento & purificaçãoRESUMO
Cyanobacteria are known for their ability to produce and release mixtures of up to thousands of compounds into the environment. Recently, the production of novel metabolites, retinoids, was reported for some cyanobacterial species along with teratogenic effects of samples containing these compounds. Retinoids are natural endogenous substances derived from vitamin A that play a crucial role in early vertebrate development. Disruption of retinoid signalling- especially during the early development of the nervous system- might lead to major malfunctions and malformations. In this study, the toxicity of cyanobacterial biomass samples from the field containing retinoids was characterized by in vivo and in vitro bioassays with a focus on the potential hazards towards nervous system development and function. Additionally, in order to identify the compounds responsible for the observed in vitro and in vivo effects the complex cyanobacterial extracts were fractionated (C18 column, water-methanol gradient) and the twelve obtained fractions were tested in bioassays. In all bioassays, all-trans retinoic acid (ATRA) was tested along with the environmental samples as a positive control. Retinoid-like activity (mediated via the retinoic acid receptor, RAR) was measured in the transgenic cell line p19/A15. The in vitro assay showed retinoid-like activity by specific interaction with RAR for the biomass samples. Neurotoxic effects of selected samples were studied on zebrafish (Danio rerio) embryos using the light/dark transition test (Viewpoint, ZebraLab system) with 120 hpf larvae. In the behavioural assay, the cyanobacterial extracts caused significant hyperactivity in zebrafish at 120 hpf after acute exposure (3 h prior to the measurement) at concentrations below the teratogenicity LOEC (0.2 g dw L-1). Similar effect was observed after exposure to fractions of the extracts with detected retinoid-like activity and additive effect was observed after combining the fractions. However, the effect on behaviour was not observed after exposure to ATRA only. To provide additional insight into the behavioural effects and describe the underlying mechanism gene expression of selected biomarkers was measured. We evaluated an array of 28 genes related to general toxicity, neurodevelopment, retinoid and thyroid signalling. We detected several affected genes, most notably, the Cyp26 enzymes that control endogenous ATRA concentration, which documents an effect on retinoid signalling.