Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 618(7966): 733-739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344647

RESUMO

Control of adhesion is a striking feature of living matter that is of particular interest regarding technological translation1-3. We discovered that entropic repulsion caused by interfacial orientational fluctuations of cholesterol layers restricts protein adsorption and bacterial adhesion. Moreover, we found that intrinsically adhesive wax ester layers become similarly antibioadhesive when containing small quantities (under 10 wt%) of cholesterol. Wetting, adsorption and adhesion experiments, as well as atomistic simulations, showed that repulsive characteristics depend on the specific molecular structure of cholesterol that encodes a finely balanced fluctuating reorientation at the interface of unconstrained supramolecular assemblies: layers of cholesterol analogues differing only in minute molecular variations showed markedly different interfacial mobility and no antiadhesive effects. Also, orientationally fixed cholesterol layers did not resist bioadhesion. Our insights provide a conceptually new physicochemical perspective on biointerfaces and may guide future material design in regulation of adhesion.


Assuntos
Aderência Bacteriana , Colesterol , Entropia , Proteínas , Adsorção , Proteínas/química , Molhabilidade , Colesterol/química
2.
Virchows Arch ; 481(2): 139-159, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35364700

RESUMO

The use of autopsies in medicine has been declining. The COVID-19 pandemic has documented and rejuvenated the importance of autopsies as a tool of modern medicine. In this review, we discuss the various autopsy techniques, the applicability of modern analytical methods to understand the pathophysiology of COVID-19, the major pathological organ findings, limitations or current studies, and open questions. This article summarizes published literature and the consented experience of the nationwide network of clinical, neuro-, and forensic pathologists from 27 German autopsy centers with more than 1200 COVID-19 autopsies. The autopsy tissues revealed that SARS-CoV-2 can be found in virtually all human organs and tissues, and the majority of cells. Autopsies have revealed the organ and tissue tropism of SARS-CoV-2, and the morphological features of COVID-19. This is characterized by diffuse alveolar damage, combined with angiocentric disease, which in turn is characterized by endothelial dysfunction, vascular inflammation, (micro-) thrombosis, vasoconstriction, and intussusceptive angiogenesis. These findings explained the increased pulmonary resistance in COVID-19 and supported the recommendations for antithrombotic treatment in COVID-19. In contrast, in extra-respiratory organs, pathological changes are often nonspecific and unclear to which extent these changes are due to direct infection vs. indirect/secondary mechanisms of organ injury, or a combination thereof. Ongoing research using autopsies aims at answering questions on disease mechanisms, e.g., focusing on variants of concern, and future challenges, such as post-COVID conditions. Autopsies are an invaluable tool in medicine and national and international interdisciplinary collaborative autopsy-based research initiatives are essential.


Assuntos
COVID-19 , Autopsia , Humanos , Pulmão/patologia , Pandemias , SARS-CoV-2
3.
Mod Pathol ; 35(8): 1013-1021, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35365771

RESUMO

The rate of SARS-CoV-2 infections in vaccinees has become a relevant serious issue. This study aimed to determine the causes of death, histological organ alteration, and viral spread in relation to demographic, clinical-pathological, viral variants, and vaccine types for deceased individuals with proven SARS-CoV-2 infection after vaccination who died between January and November 2021. Twenty-nine consecutively collected cases were analyzed and compared to 141 nonvaccinated control cases. Autopsies were performed on 16 partially and 13 fully vaccinated individuals. Most patients were elderly and suffered from several relevant comorbidities. Real-time RT-PCR (RT-qPCR) identified a significantly increased rate of generalized viral dissemination within organ systems in vaccinated cases versus nonvaccinated cases (45% vs. 16%, respectively; P = 0.008) mainly with Ct-values of higher than 25 in non-respiratory samples. However, vaccinated cases also showed high viral loads, reaching Ct-values below 10, especially in the upper airways and lungs. This was accompanied by high rates of pulmonal bacterial or mycotic superinfections and the occurrence of immunocompromising factors, such as malignancies, immunosuppressive drug intake, or decreased immunoglobulin levels. All these findings were particularly accentuated in partially vaccinated patients compared to fully vaccinated individuals. The virus dissemination observed in our case study may indicate that patients with an impaired immune system have a decreased ability to eliminate the virus. However, the potential role of antibody-dependent enhancement must also be ruled out in future studies. Fatal cases of COVID-19 in vaccinees were rare and often associated with severe comorbidities or other immunosuppressive conditions.


Assuntos
COVID-19 , Idoso , Autopsia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Carga Viral
4.
Virchows Arch ; 480(3): 519-528, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34993593

RESUMO

Confronted with an emerging infectious disease at the beginning of the COVID-19 pandemic, the medical community faced concerns regarding the safety of autopsies on those who died of the disease. This attitude has changed, and autopsies are now recognized as indispensable tools for understanding COVID-19, but the true risk of infection to autopsy staff is nevertheless still debated. To clarify the rate of SARS-CoV-2 contamination in personal protective equipment (PPE), swabs were taken at nine points in the PPE of one physician and one assistant after each of 11 full autopsies performed at four centers. Swabs were also obtained from three minimally invasive autopsies (MIAs) conducted at a fifth center. Lung/bronchus swabs of the deceased served as positive controls, and SARS-CoV-2 RNA was detected by real-time RT-PCR. In 9 of 11 full autopsies, PPE samples tested RNA positive through PCR, accounting for 41 of the 198 PPE samples taken (21%). The main contaminated items of the PPE were gloves (64% positive), aprons (50% positive), and the tops of shoes (36% positive) while the fronts of safety goggles, for example, were positive in only 4.5% of the samples, and all the face masks were negative. In MIAs, viral RNA was observed in one sample from a glove but not in other swabs. Infectious virus isolation in cell culture was performed on RNA-positive swabs from the full autopsies. Of all the RNA-positive PPE samples, 21% of the glove samples, taken in 3 of 11 full autopsies, tested positive for infectious virus. In conclusion, PPE was contaminated with viral RNA in 82% of autopsies. In 27% of autopsies, PPE was found to be contaminated even with infectious virus, representing a potential risk of infection to autopsy staff. Adequate PPE and hygiene measures, including appropriate waste deposition, are therefore essential to ensure a safe work environment.


Assuntos
COVID-19 , Equipamento de Proteção Individual , Autopsia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , RNA Viral/genética , SARS-CoV-2
5.
R Soc Open Sci ; 5(7): 171742, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30109045

RESUMO

Springtails (Collembola) have a nanostructured cuticle. To evaluate and to understand anti-biofouling properties of springtail cuticles' morphology under different conditions, springtails, shed cuticles and cuticle replicates were studied after incubation with protein solutions and bacterial cultures using common in vitro models. In a second step, they were exposed to human oral environment in situ in order to explore potential application in dentistry. In vitro, the cuticular structures were found to resist wetting by albumin solutions for up to 3 h and colonization by Staphylococcus epidermidis was inhibited. When exposed in the oral cavity, initial pellicle formation was of high heterogeneity: parts of the surface were coated by adsorbed proteins, others remained uncoated but exhibited locally attached, 'bridging', proteinaceous membranes spanning across cavities of the cuticle surface; this unique phenomenon was observed for the first time. Also the degree of bacterial colonization varied considerably. In conclusion, the springtail cuticle partially modulates bioadhesion in the oral cavity in a unique and specific manner, but it has no universal effect. Especially after longer exposure, the nanotextured surface of springtails is masked by the pellicle, resulting in subsequent bacterial colonization, and, thus, cannot effectively avoid bioadhesion in the oral cavity comprehensively. Nevertheless, the observed phenomena offer valuable information and new perspectives for the development of antifouling surfaces applicable in the oral cavity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA