Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4193, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858962

RESUMO

Here we show how major rivers can efficiently connect to the deep-sea, by analysing the longest runout sediment flows (of any type) yet measured in action on Earth. These seafloor turbidity currents originated from the Congo River-mouth, with one flow travelling >1,130 km whilst accelerating from 5.2 to 8.0 m/s. In one year, these turbidity currents eroded 1,338-2,675 [>535-1,070] Mt of sediment from one submarine canyon, equivalent to 19-37 [>7-15] % of annual suspended sediment flux from present-day rivers. It was known earthquakes trigger canyon-flushing flows. We show river-floods also generate canyon-flushing flows, primed by rapid sediment-accumulation at the river-mouth, and sometimes triggered by spring tides weeks to months post-flood. It is demonstrated that strongly erosional turbidity currents self-accelerate, thereby travelling much further, validating a long-proposed theory. These observations explain highly-efficient organic carbon transfer, and have important implications for hazards to seabed cables, or deep-sea impacts of terrestrial climate change.


Assuntos
Sedimentos Geológicos , Rios , Carbono , Monitoramento Ambiental , Inundações , Estações do Ano
2.
J Inorg Biochem ; 110: 1-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22459167

RESUMO

In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron.


Assuntos
Ferro/química , Fosfatos/química , Transferrina/química , Humanos , Ferro/sangue , Oxirredução , Fosfatos/sangue , Transferrina/metabolismo
3.
J Inorg Biochem ; 108: 8-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22265833

RESUMO

When the iron core of equine spleen ferritin is reduced, anions in solution cross the protein shell and enter the ferritin interior as part of a charge balancing reaction. Anion sequestration inside ferritin during iron core reduction was monitored using ion selective electrodes, inductively coupled plasma emission, and energy-dispersive X-ray spectroscopy. The requirement for anion translocation to the ferritin interior occurs because upon iron core reduction, two OH(-) ions per iron are released or neutralized inside ferritin leaving a net positive charge. Halides and oxoanions were tested as anionic substrates for this reaction. A general trend for the halides showed that the smaller halides accumulated inside ferritin in greater abundance than larger halides, presumably because the protein channels restrict the transfer of the larger anionic species. In contrast, oxoanion accumulation inside ferritin did not show selectivity based on size or charge. Vanadate and molybdate accumulated to the highest concentrations and nitrate, phosphate and tungstate showed poor accumulation inside ferritin. Fe(II) remains stably sequestered inside ferritin, as shown by electron microscopy and by column chromatography. Upon oxidation of the iron core, the anions are expelled from ferritin, and OH(-) ions coordinate to the Fe(III) to form the original Fe(O)OH mineral. Anion transport across the ferritin protein shell represents an important mechanism by which ferritin maintains proper charge balance inside the protein cavity.


Assuntos
Ânions/química , Molibdênio/química , Ferritinas , Hidróxidos/química , Ferro , Modelos Químicos , Nitratos/química , Fosfatos/química , Compostos de Tungstênio/química , Vanadatos/química
4.
Biometals ; 25(2): 259-73, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22012445

RESUMO

Ferritin iron loading was studied in the presence of physiological serum phosphate concentrations (1 mM), elevated serum concentrations (2-5 mM), and intracellular phosphate concentrations (10 mM). Experiments compared iron loading into homopolymers of H and L ferritin with horse spleen ferritin. Prior to studying the reactions with ferritin, a series of control reactions were performed to study the solution chemistry of Fe(2+) and phosphate. In the absence of ferritin, phosphate catalyzed Fe(2+) oxidation and formed soluble polymeric Fe(III)-phosphate complexes. The Fe(III)-phosphate complexes were characterized by electron microscopy and atomic force microscopy, which revealed spherical nanoparticles with diameters of 10-20 nm. The soluble Fe(III)-phosphate complexes also formed as competing reactions during iron loading into ferritin. Elemental analysis on ferritin samples separated from the Fe(III)-phosphate complexes showed that as the phosphate concentration increased, the iron loading into horse ferritin decreased. The composition of the mineral that does form inside horse ferritin has a higher iron/phosphate ratio (~1:1) than ferritin purified from tissue (~10:1). Phosphate significantly inhibited iron loading into L ferritin, due to the lack of the ferroxidase center in this homopolymer. Spectrophotometric assays of iron loading into H ferritin showed identical iron loading curves in the presence of phosphate, indicating that the ferroxidase center of H ferritin efficiently competes with phosphate for the binding and oxidation of Fe(2+). Additional studies demonstrated that H ferritin ferroxidase activity could be used to oxidize Fe(2+) and facilitate the transfer of the Fe(3+) into apo transferrin in the presence of phosphate.


Assuntos
Ceruloplasmina/química , Compostos Férricos/química , Ferritinas/química , Ferro/química , Coloides , Humanos , Oximetria , Proteínas Recombinantes/química , Espectrofotometria
5.
J Inorg Biochem ; 105(7): 972-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21561591

RESUMO

The buffer used during horse spleen ferritin iron loading significantly influences the mineralization process and the quantity of iron deposited in ferritin. Ferritin iron loading in imidazole shows a rapid hyperbolic curve in contrast to iron loading in 3-(N-morpholino)propanesulfonic acid (MOPS), which displays a slower sigmoidal curve. Ferritin iron loading in an equimolar mixture of imidazole and MOPS produces an iron-loading curve that is intermediate between the imidazole and MOPS curves indicating that one buffer does not dominate the reaction mechanism. The UV-visible spectrum of the ferritin mineral has a higher absorbance from 250 to 450 nm when prepared in imidazole buffer than in MOPS buffer. These results suggest that different mineral phases form in ferritin by different loading mechanisms in imidazole and MOPS buffered reactions. Samples of 1500 Fe/ferritin were prepared in MOPS or imidazole buffer and were analyzed for crystallinity and using the electron diffraction capabilities of the electron microscope. The sample prepared in imidazole was significantly more crystalline than the sample prepared in MOPS. X-ray powder diffraction studies showed that small cores (~500 Fe/ferritin) prepared in MOPS or imidazole possess a 2-line ferrihydrite spectrum. As the core size increases the mineral phase begins to change from 2-line to 6-line ferrihydrite with the imidazole sample favoring the 6-line ferrihydrite phase. Taken together, these results suggest that the iron deposition mechanism in ferritin can be controlled by properties of the buffer with samples prepared in imidazole forming a larger, more ordered crystalline mineral than samples prepared in MOPS.


Assuntos
Apoferritinas/química , Ferritinas/química , Imidazóis/química , Ferro/química , Morfolinas/química , Animais , Soluções Tampão , Cavalos , Cinética , Microscopia Eletrônica de Transmissão , Difração de Pó , Ligação Proteica
6.
J Inorg Biochem ; 105(2): 202-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21194619

RESUMO

The rate of Fe(3+) release from horse spleen ferritin (HoSF) was measured using the Fe(3+)-specific chelator desferoxamine (DES). The reaction consists of two kinetic phases. The first is a rapid non-linear reaction followed by a slower linear reaction. The overall two-phase reaction was resolved into three kinetic events: 1) a rapid first-order reaction in HoSF (k(1)); 2) a second slower first-order reaction in HoSF (k(2)); and 3) a zero-order slow reaction in HoSF (k(3)). The zero-order reaction was independent of DES concentration. The two first-order reactions had a near zero-order dependence on DES concentration and were independent of pH from 6.8 to 8.2. The two first-order reactions accounted for 6-9 rapidly reacting Fe(3+) ions. Activation energies of 10.5±0.8, 13.5±2.0 and 62.4±2.1kJ/mol were calculated for the kinetic events associated with k(1), k(2), and k(3), respectively. Iron release occurs by: 1) a slow zero-order rate-limiting reaction governed by k(3) and corresponding to the dissociation of Fe(3+) ions from the FeOOH core that bind to an Fe(3+) binding site designated as site 1 (proposed to be within the 3-fold channel); 2) transfer of Fe(3+) from site 1 to site 2 (a second binding site in the 3-fold channel) (k(2)); and 3) rapid iron loss from site 2 to DES (k(1)).


Assuntos
Quelantes/química , Desferroxamina/química , Compostos Férricos/química , Ferritinas/química , Baço/química , Animais , Cavalos , Cinética , Oxirredução , Ligação Proteica , Temperatura
7.
Biochim Biophys Acta ; 1800(8): 745-59, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20214952

RESUMO

BACKGROUND: Most models for ferritin iron release are based on reduction and chelation of iron. However, newer models showing direct Fe(III) chelation from ferritin have been proposed. Fe(III) chelation reactions are facilitated by gated pores that regulate the opening and closing of the channels. SCOPE OF REVIEW: Results suggest that iron core reduction releases hydroxide and phosphate ions that exit the ferritin interior to compensate for the negative charge of the incoming electrons. Additionally, chloride ions are pumped into ferritin during the reduction process as part of a charge balance reaction. The mechanism of anion import or export is not known but is a natural process because phosphate is a native component of the iron mineral core and non-native anions have been incorporated into ferritin in vitro. Anion transfer across the ferritin protein shell conflicts with spin probe studies showing that anions are not easily incorporated into ferritin. To accommodate both of these observations, ferritin must possess a mechanism that selects specific anions for transport into or out of ferritin. Recently, a gated pore mechanism to open the 3-fold channels was proposed and might explain how anions and chelators can penetrate the protein shell for binding or for direct chelation of iron. CONCLUSIONS AND GENERAL SIGNIFICANCE: These proposed mechanisms are used to evaluate three in vivo iron release models based on (1) equilibrium between ferritin iron and cytosolic iron, (2) iron release by degradation of ferritin in the lysosome, and (3) metallo-chaperone mediated iron release from ferritin.


Assuntos
Ferritinas/química , Ferritinas/metabolismo , Íons/metabolismo , Animais , Transporte Biológico/fisiologia , Domínio Catalítico , Humanos , Ferro/metabolismo , Modelos Biológicos , Modelos Moleculares , Oxirredução , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA