Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 15(6): e202100380, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35357086

RESUMO

The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.


Assuntos
Microscopia , Engenharia Tecidual , Imageamento Tridimensional , Microscopia/métodos , Análise Espectral Raman/métodos
3.
Biomed Opt Express ; 12(1): 303-319, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33520386

RESUMO

Label-free vibrational imaging of biological samples has attracted significant interest due to its integration of structural and chemical information. Vibrational infrared photothermal amplitude and phase signal (VIPPS) imaging provide label-free chemical identification by targeting the characteristic resonances of biological compounds that are present in the mid-infrared fingerprint region (3 µm - 12 µm). High contrast imaging of subcellular features and chemical identification of protein secondary structures in unlabeled and labeled fibroblast cells embedded in a collagen-rich extracellular matrix is demonstrated by combining contrast from absorption signatures (amplitude signals) with sensitive detection of different heat properties (lock-in phase signals). We present that the detectability of nano-sized cell membranes is enhanced to well below the optical diffraction limit since the membranes are found to act as thermal barriers. VIPPS offers a novel combination of chemical imaging and thermal diffusion characterization that paves the way towards label-free imaging of cell models and tissues as well as the study of intracellular heat dynamics.

4.
Biophys J ; 118(6): 1489-1501, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32097620

RESUMO

T cell receptor phosphorylation by Lck is an essential step in T cell activation. It is known that the conformational states of Lck control enzymatic activity; however, the underlying principles of how Lck finds its substrate over the plasma membrane remain elusive. Here, single-particle tracking is paired with photoactivatable localization microscopy to observe the diffusive modes of Lck in the plasma membrane. Individual Lck molecules switched between free and confined diffusion in both resting and stimulated T cells. Lck mutants locked in the open conformation were more confined than Lck mutants in the closed conformation. Further confinement of kinase-dead versions of Lck suggests that Lck confinement was not caused by phosphorylated substrates. Our data support a model in which confined diffusion of open Lck results in high local phosphorylation rates, and inactive, closed Lck diffuses freely to enable long-range distribution over the plasma membrane.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Receptores de Antígenos de Linfócitos T , Humanos , Células Jurkat , Ativação Linfocitária , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Angew Chem Int Ed Engl ; 58(41): 14495-14498, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31418504

RESUMO

Alexa Fluor 647 is a widely used fluorescent probe for cell bioimaging and super-resolution microscopy. Herein, the reversible fluorescence switching of Alexa Fluor 647 conjugated to bovine serum albumin (BSA) and adsorbed onto indium tin oxide (ITO) electrodes under electrochemical potential control at the level of single protein molecules is reported. The modulation of the fluorescence as a function of potential was observed using total internal reflectance fluorescence (TIRF) microscopy. The fluorescence intensity of the Alexa Fluor 647 decreased, or reached background levels, at reducing potentials but returned to normal levels at oxidizing potentials. These electrochemically induced changes in fluorescence were sensitive to pH despite that BSA-Alexa Fluor 647 fluorescence without applied potential is insensitive to pH between values of 4-10. The observed pH dependence indicated the involvement of electron and proton transfer in the fluorescence switching mechanism.


Assuntos
Carbocianinas/química , Técnicas Eletroquímicas/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Estrutura Molecular
6.
Nanoscale ; 11(26): 12460-12464, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31120079

RESUMO

Quantitative PAINT (qPAINT) is a useful method for counting well-separated molecules within nanoscale assemblies. But whether cross-reactivity in densely-packed arrangements perturbs measurements is unknown. Here we establish that qPAINT measurements are robust even when target molecules are separated by as little as 3 nm, sufficiently close that single-stranded DNA binding sites can interact.


Assuntos
DNA de Cadeia Simples/química , Nanotubos/química , Nanotubos/ultraestrutura
7.
R Soc Open Sci ; 6(12): 191268, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31903209

RESUMO

Recently, DNA-PAINT single-molecule localization microscopy (SMLM) has shown great promise for quantitative imaging; however, labelling strategies thus far have relied on multivalent and affinity-based approaches. Here, the covalent labelling of expressed protein tags (SNAP tag and Halo tag) with single DNA-docking strands and application of SMLM via DNA-PAINT is demonstrated. tagPAINT is then used for T-cell receptor signalling proteins at the immune synapse as a proof of principle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA