RESUMO
BACKGROUND: Symptoms related to mood and anxiety disorders (emotional disorders) often present in childhood and adolescence. Some of the genetic liability for mental disorders, and emotional and behavioral difficulties seems to be shared. Yet, it is unclear how genetic liability for emotional disorders and related traits influence trajectories of childhood behavioral and emotional difficulties, and if specific developmental patterns are associated with higher genetic liability for these disorders. METHODS: This study uses data from a genotyped sample of children (n = 54,839) from the Norwegian Mother, Father, and Child Cohort Study (MoBa). We use latent growth models (1.5-5 years) and latent profile analyses (1.5-8 years) to quantify childhood trajectories and profiles of emotional and behavioral difficulties and diagnoses. We examine associations between these trajectories and profiles with polygenic scores for bipolar disorder (PGSBD), anxiety (PGSANX), depression (PGSDEP), and neuroticism (PGSNEUR). RESULTS: Associations between PGSDEP, PGSANX, and PGSNEUR, and emotional and behavioral difficulties in childhood were more persistent than age-specific across early childhood (1.5-5 years). Higher PGSANX and PGSDEP were associated with steeper increases in behavioral difficulties across early childhood. Latent profile analyses identified five profiles with different associations with emotional disorder diagnosis. All PGS were associated with the probability of classification into profiles characterized by some form of difficulties (vs. a normative reference profile), but only PGSBD was uniquely associated with a single developmental profile. CONCLUSIONS: Genetic risk for mood disorders and related traits contribute to both a higher baseline level of, and a more rapid increase in, emotional and behavioral difficulties across early and middle childhood, with some indications for disorder-specific profiles. Our findings may inform research on developmental pathways to emotional disorders and the improvement of initiatives for early identification and targeted intervention.
RESUMO
Background: Genetics has the potential to inform biologically relevant drug treatment and repurposing which may ultimately improve patient care. In this study, we combine methods which leverage the genetics of psychiatric disorders to prioritize potential drug targets and compounds. Methods: We used the largest available genome-wide association studies, in European ancestry, of four psychiatric disorders [i.e., attention deficit hyperactivity disorder (ADHD), bipolar disorder, depression, and schizophrenia] along with genes encoding drug targets. With this data, we conducted drug enrichment analyses incorporating the novel and biologically specific GSA-MiXeR tool. We then conducted a series of molecular trait analyses using large-scale transcriptomic and proteomic datasets sampled from brain and blood tissue. This included the novel use of the UK Biobank proteomic data for a proteome-wide association study of psychiatric disorders. With the accumulated evidence, we prioritize potential drug targets and compounds for each disorder. Findings: We reveal candidate drug targets shared across multiple disorders as well as disorder-specific targets. Drug prioritization indicated genetic support for several currently used psychotropic medications including the antipsychotic paliperidone as the top ranked drug for schizophrenia. We also observed genetic support for other commonly used psychotropics (e.g., clozapine, risperidone, duloxetine, lithium, and valproic acid). Opportunities for drug repurposing were revealed such as cholinergic drugs for ADHD, estrogens for depression, and gabapentin enacarbil for schizophrenia. Our findings also indicate the genetic liability to schizophrenia is associated with reduced brain and blood expression of CYP2D6, a gene encoding a metabolizer of drugs and neurotransmitters, suggesting a genetic risk for poor drug response and altered neurotransmission. Interpretation: Here we present a series of complimentary and comprehensive analyses that highlight the utility of genetics for informing drug development and repurposing for psychiatric disorders. Our findings present novel opportunities for refining psychiatric treatment.
RESUMO
AIMS: Anxiety disorders are prevalent and anxiety symptoms (ANX) co-occur with many psychiatric disorders. We aimed to identify genomic loci associated with ANX, characterize its genetic architecture, and genetic overlap with psychiatric disorders. METHODS: We included a genome-wide association study of ANX (meta-analysis of UK Biobank and Million Veterans Program, n = 301,732), schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), and validated the findings in the Norwegian Mother, Father, and Child Cohort (n = 95,841). We employed the bivariate causal mixture model and local analysis of covariant association to characterize the genetic architecture including overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of loci associated with anxiety and shared with psychiatric disorders. RESULTS: Anxiety was polygenic with 12.9k genetic variants and overlapped extensively with psychiatric disorders (4.1k-11.4k variants) with predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 119 novel loci for anxiety by conditioning on the psychiatric disorders, and loci shared between anxiety and MD n = 47 $$ \left(n=47\right) $$ , BIP n = 33 $$ \left(n=33\right) $$ , SCZ n = 71 $$ \left(n=71\right) $$ , ADHD n = 20 $$ \left(n=20\right) $$ , and ASD n = 5 $$ \left(n=5\right) $$ . Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways including cell adhesion and neurofibrillary tangle compared with genes annotated to the shared loci. CONCLUSIONS: Anxiety is highly polygenic phenotype with extensive genetic overlap with psychiatric disorders, and we identified novel loci for anxiety implicating new molecular pathways. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified molecular underpinnings may lead to potential drug targets.
RESUMO
OBJECTIVE: This study aims to investigate whether antidepressant users display differences in fat distribution and muscle composition relative to non-users and to explore risk factors for developing cardiovascular disease (CVD) and type 2 diabetes. METHODS: The study used quantitative adipose and muscle tissue measures derived from magnetic resonance imaging data from UK Biobank (N = 40,174). Fat distribution and muscle composition of selective serotonin reuptake inhibitor (SSRI) and tricyclic antidepressant (TCA) users were compared with sex-, age-, and BMI-matched control individuals. Cox regression models were used to test for increased risk of developing CVD and type 2 diabetes. RESULTS: SSRI users had more visceral fat, smaller muscle volume, and higher muscle fat infiltration compared with matched control individuals. Female users showed a larger increase in BMI over time compared with male users. However, male users displayed an unhealthier body composition profile. Male SSRI users also had an increased risk of developing CVD. Both male and female TCA users showed lower muscle volume and an increased risk of developing type 2 diabetes. CONCLUSIONS: Adverse changes in body composition of antidepressant users are not captured by tracking the body weight or the BMI of the patients. These changes may lead to a worsened cardiometabolic risk profile.
Assuntos
Antidepressivos , Composição Corporal , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores Seletivos de Recaptação de Serotonina , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Composição Corporal/efeitos dos fármacos , Antidepressivos/efeitos adversos , Adulto , Índice de Massa Corporal , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/diagnóstico por imagem , Idoso , Fatores de Risco , Fatores de Risco Cardiometabólico , Imageamento por Ressonância Magnética , Gordura Intra-Abdominal/efeitos dos fármacos , Reino Unido/epidemiologia , Antidepressivos Tricíclicos/efeitos adversos , Estudos de Casos e ControlesRESUMO
While genome-wide association studies are increasingly successful in discovering genomic loci associated with complex human traits and disorders, the biological interpretation of these findings remains challenging. Here we developed the GSA-MiXeR analytical tool for gene set analysis (GSA), which fits a model for the heritability of individual genes, accounting for linkage disequilibrium across variants and allowing the quantification of partitioned heritability and fold enrichment for small gene sets. We validated the method using extensive simulations and sensitivity analyses. When applied to a diverse selection of complex traits and disorders, including schizophrenia, GSA-MiXeR prioritizes gene sets with greater biological specificity compared to standard GSA approaches, implicating voltage-gated calcium channel function and dopaminergic signaling for schizophrenia. Such biologically relevant gene sets, often with fewer than ten genes, are more likely to provide insights into the pathobiology of complex diseases and highlight potential drug targets.
Assuntos
Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Esquizofrenia , Humanos , Estudo de Associação Genômica Ampla/métodos , Esquizofrenia/genética , Herança Multifatorial/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Predisposição Genética para Doença , Mapeamento Cromossômico/métodos , Simulação por Computador , Característica Quantitativa HerdávelRESUMO
Ageing is a heterogeneous multisystem process involving different rates of decline in physiological integrity across biological systems. The current study dissects the unique and common variance across body and brain health indicators and parses inter-individual heterogeneity in the multisystem ageing process. Using machine-learning regression models on the UK Biobank data set (N = 32,593, age range 44.6-82.3, mean age 64.1 years), we first estimated tissue-specific brain age for white and gray matter based on diffusion and T1-weighted magnetic resonance imaging (MRI) data, respectively. Next, bodily health traits, including cardiometabolic, anthropometric, and body composition measures of adipose and muscle tissue from bioimpedance and body MRI, were combined to predict 'body age'. The results showed that the body age model demonstrated comparable age prediction accuracy to models trained solely on brain MRI data. The correlation between body age and brain age predictions was 0.62 for the T1 and 0.64 for the diffusion-based model, indicating a degree of unique variance in brain and bodily ageing processes. Bayesian multilevel modelling carried out to quantify the associations between health traits and predicted age discrepancies showed that higher systolic blood pressure and higher muscle-fat infiltration were related to older-appearing body age compared to brain age. Conversely, higher hand-grip strength and muscle volume were related to a younger-appearing body age. Our findings corroborate the common notion of a close connection between somatic and brain health. However, they also suggest that health traits may differentially influence age predictions beyond what is captured by the brain imaging data, potentially contributing to heterogeneous ageing rates across biological systems and individuals.
Assuntos
Envelhecimento , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Masculino , Envelhecimento/fisiologia , Feminino , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Composição Corporal/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Teorema de BayesRESUMO
Comorbidities are an increasing global health challenge. Accumulating evidence suggests overlapping genetic architectures underlying comorbid complex human traits and disorders. The bivariate causal mixture model (MiXeR) can quantify the polygenic overlap between complex phenotypes beyond global genetic correlation. Still, the pattern of genetic overlap between three distinct phenotypes, which is important to better characterize multimorbidities, has previously not been possible to quantify. Here, we present and validate the trivariate MiXeR tool, which disentangles the pattern of genetic overlap between three phenotypes using summary statistics from genome-wide association studies (GWAS). Our simulations show that the trivariate MiXeR can reliably reconstruct different patterns of genetic overlap. We further demonstrate how the tool can be used to estimate the proportions of genetic overlap between three phenotypes using real GWAS data, providing examples of complex patterns of genetic overlap between diverse human traits and diseases that could not be deduced from bivariate analyses. This contributes to a better understanding of the etiology of complex phenotypes and the nature of their relationship, which may aid in dissecting comorbidity patterns and their biological underpinnings.
RESUMO
BACKGROUND: Opioid use disorder (OUD), a serious health burden worldwide, is associated with lower cognitive function. Recent studies have demonstrated a negative genetic correlation between OUD and general cognitive ability (COG), indicating a shared genetic basis. However, the specific genetic variants involved, and the underlying molecular mechanisms remain poorly understood. Here, we aimed to quantify and identify the genetic basis underlying OUD and COG. METHODS: We quantified the extent of genetic overlap between OUD and COG using a bivariate causal mixture model (MiXeR) and identified specific genetic loci applying conditional/conjunctional FDR. Finally, we investigated biological function and expression of implicated genes using available resources. RESULTS: We estimated that ~94% of OUD variants (4.8k out of 5.1k variants) also influence COG. We identified three novel OUD risk loci and one locus shared between OUD and COG. Loci identified implicated biological substrates in the basal ganglia. CONCLUSION: We provide new insights into the complex genetic risk architecture of OUD and its genetic relationship with COG.
Assuntos
Estudo de Associação Genômica Ampla , Transtornos Relacionados ao Uso de Opioides , Humanos , Cognição , Transtornos Relacionados ao Uso de Opioides/genéticaRESUMO
Background: Anxiety disorders are prevalent and anxiety symptoms co-occur with many psychiatric disorders. We aimed to identify genomic risk loci associated with anxiety, characterize its genetic architecture, and genetic overlap with psychiatric disorders. Methods: We used the GWAS of anxiety symptoms, schizophrenia, bipolar disorder, major depression, and attention deficit hyperactivity disorder (ADHD). We employed MiXeR and LAVA to characterize the genetic architecture and genetic overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of genomic loci associated with anxiety and those shared with psychiatric disorders. Gene annotation and gene set analyses were conducted using OpenTargets and FUMA, respectively. Results: Anxiety was polygenic with 12.9k estimated genetic risk variants and overlapped extensively with psychiatric disorders (4.1-11.4k variants). MiXeR and LAVA revealed predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 114 novel loci for anxiety by conditioning on the psychiatric disorders. We also identified loci shared between anxiety and major depression (n = 47), bipolar disorder (n = 33), schizophrenia (n = 71), and ADHD (n = 20). Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways and differential tissue expression in more diverse tissues than those annotated to the shared loci. Conclusions: Anxiety is a highly polygenic phenotype with extensive genetic overlap with psychiatric disorders. These genetic overlaps enabled the identification of novel loci for anxiety. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified genetic loci implicate molecular pathways that may lead to potential drug targets.
RESUMO
Improved understanding of the shared genetic architecture between psychiatric disorders and brain white matter may provide mechanistic insights for observed phenotypic associations. Our objective is to characterize the shared genetic architecture of bipolar disorder (BD), major depression (MD), and schizophrenia (SZ) with white matter fractional anisotropy (FA) and identify shared genetic loci to uncover biological underpinnings. We used genome-wide association study (GWAS) summary statistics for BD (n = 413,466), MD (n = 420,359), SZ (n = 320,404), and white matter FA (n = 33,292) to uncover the genetic architecture (i.e., polygenicity and discoverability) of each phenotype and their genetic overlap (i.e., genetic correlations, overlapping trait-influencing variants, and shared loci). This revealed that BD, MD, and SZ are at least 7-times more polygenic and less genetically discoverable than average FA. Even in the presence of weak genetic correlations (range = -0.05 to -0.09), average FA shared an estimated 42.5%, 43.0%, and 90.7% of trait-influencing variants as well as 12, 4, and 28 shared loci with BD, MD, and SZ, respectively. Shared variants were mapped to genes and tested for enrichment among gene-sets which implicated neurodevelopmental expression, neural cell types, myelin, and cell adhesion molecules. For BD and SZ, case vs control tract-level differences in FA associated with genetic correlations between those same tracts and the respective disorder (rBD = 0.83, p = 4.99e-7 and rSZ = 0.65, p = 5.79e-4). Genetic overlap at the tract-level was consistent with average FA results. Overall, these findings suggest a genetic basis for the involvement of brain white matter aberrations in the pathophysiology of psychiatric disorders.
Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Substância Branca , Humanos , Estudo de Associação Genômica Ampla , Imagem de Tensor de Difusão/métodos , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genéticaRESUMO
Anorexia nervosa (AN) is a heritable eating disorder (50-60%) with an array of commonly comorbid psychiatric disorders and related traits. Although significant genetic correlations between AN and psychiatric disorders and related traits have been reported, their shared genetic architecture is largely understudied. We investigated the shared genetic architecture of AN and schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), mood instability (Mood), neuroticism (NEUR), and intelligence (INT). We applied the conditional false discovery rate (FDR) method to identify novel risk loci for AN, and conjunctional FDR to identify loci shared between AN and related phenotypes, to summarize statistics from relevant genome-wide association studies (GWAS). Individual GWAS samples varied from 72,517 to 420,879 participants. Using conditional FDR we identified 58 novel AN loci. Furthermore, we identified 38 unique loci shared between AN and major psychiatric disorders (SCZ, BIP, and MD) and 45 between AN and psychological traits (Mood, NEUR, and INT). In line with genetic correlations, the majority of shared loci showed concordant effect directions. Functional analyses revealed that the shared loci are involved in 65 unique pathways, several of which overlapped across analyses, including the "signal by MST1" pathway involved in Hippo signaling. In conclusion, we demonstrated genetic overlap between AN and major psychiatric disorders and related traits, and identified novel risk loci for AN by leveraging this overlap. Our results indicate that some shared characteristics between AN and related disorders and traits may have genetic underpinnings.
Assuntos
Anorexia Nervosa , Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Anorexia Nervosa/genética , Estudo de Associação Genômica Ampla , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , FenótipoRESUMO
C-reactive protein (CRP) tends to be elevated in individuals with psychiatric disorders. Recent findings have suggested a protective effect of the genetic liability to elevated CRP on schizophrenia risk and a causative effect on depression despite weak genetic correlations, while causal relationships with bipolar disorder were inconclusive. We investigated the shared genetic underpinnings of psychiatric disorders and variation in CRP levels. Genome-wide association studies for CRP (n = 575,531), bipolar disorder (n = 413,466), depression (n = 480,359), and schizophrenia (n = 130,644) were used in causal mixture models to compare CRP with psychiatric disorders based on polygenicity, discoverability, and genome-wide genetic overlap. The conjunctional false discovery rate method was used to identify specific shared genetic loci. Shared variants were mapped to putative causal genes, which were tested for overrepresentation among gene ontology gene-sets. CRP was six to ten times less polygenic (n = 1400 vs 8600-14,500 variants) and had a discoverability one to two orders of magnitude higher than psychiatric disorders. Most CRP-associated variants were overlapping with psychiatric disorders. We identified 401 genetic loci jointly associated with CRP and psychiatric disorders with mixed effect directions. Gene-set enrichment analyses identified predominantly CNS-related gene sets for CRP and each of depression and schizophrenia, and basic cellular processes for CRP and bipolar disorder. In conclusion, CRP has a markedly different genetic architecture to psychiatric disorders, but the majority of CRP associated variants are also implicated in psychiatric disorders. Shared genetic loci implicated CNS-related processes to a greater extent than immune processes, which may have implications for how we conceptualise causal relationships between CRP and psychiatric disorders.
Assuntos
Transtorno Bipolar , Transtornos Mentais , Esquizofrenia , Humanos , Proteína C-Reativa/genética , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Esquizofrenia/genética , Transtorno Bipolar/genética , Transtorno Bipolar/psicologia , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genéticaRESUMO
OBJECTIVE: Schizophrenia is associated with increased risk of cardiovascular disease (CVD), although there is variation in risk among individuals. There are indications of shared genetic etiology between schizophrenia and CVD, but the nature of the overlap remains unclear. The aim of this study was to fill this gap in knowledge. METHODS: Overlapping genetic architectures between schizophrenia and CVD risk factors were assessed by analyzing recent genome-wide association study (GWAS) results. The bivariate causal mixture model (MiXeR) was applied to estimate the number of shared variants and the conjunctional false discovery rate (conjFDR) approach was used to pinpoint specific shared loci. RESULTS: Extensive genetic overlap was found between schizophrenia and CVD risk factors, particularly smoking initiation (N=8.6K variants) and body mass index (BMI) (N=8.1K variants). Several specific shared loci were detected between schizophrenia and BMI (N=304), waist-to-hip ratio (N=193), smoking initiation (N=293), systolic (N=294) and diastolic (N=259) blood pressure, type 2 diabetes (N=147), lipids (N=471), and coronary artery disease (N=35). The schizophrenia risk loci shared with smoking initiation had mainly concordant effect directions, and the risk loci shared with BMI had mainly opposite effect directions. The overlapping loci with lipids, blood pressure, waist-to-hip ratio, type 2 diabetes, and coronary artery disease had mixed effect directions. Functional analyses implicated mapped genes that are expressed in brain tissue and immune cells. CONCLUSIONS: These findings indicate a genetic propensity to smoking and a reduced genetic risk of obesity among individuals with schizophrenia. The bidirectional effects of the shared loci with the other CVD risk factors may imply differences in genetic liability to CVD across schizophrenia subgroups, possibly underlying the variation in CVD comorbidity.
Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Esquizofrenia , Humanos , Doenças Cardiovasculares/genética , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla/métodos , Esquizofrenia/genética , Fatores de Risco , Lipídeos , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Loci Gênicos/genéticaRESUMO
Autism spectrum disorder (ASD) is a highly heritable condition with a large variation in cognitive function. Here we investigated the shared genetic architecture between cognitive traits (intelligence (INT) and educational attainment (EDU)), and risk loci jointly associated with ASD and the cognitive traits. We analyzed data from genome-wide association studies (GWAS) of INT (n = 269,867), EDU (n = 766,345) and ASD (cases n = 18,381, controls n = 27,969). We used the bivariate causal mixture model (MiXeR) to estimate the total number of shared genetic variants, local analysis of co-variant annotation (LAVA) to estimate local genetic correlations, conditional false discovery rate (cond/conjFDR) to identify specific overlapping loci. The MiXeR analyses showed that 12.7k genetic variants are associated with ASD, of which 12.0k variants are shared with EDU, and 11.1k are shared with INT with both positive and negative relationships within overlapping variants. The majority (59-68%) of estimated shared loci have concordant effect directions, with a positive, albeit modest, genetic correlation between ASD and EDU (rg = 0.21, p = 2e-13) and INT (rg = 0.22, p = 4e-12). We discovered 43 loci jointly associated with ASD and cognitive traits (conjFDR<0.05), of which 27 were novel for ASD. Functional analysis revealed significant differential expression of candidate genes in the cerebellum and frontal cortex. To conclude, we quantified the genetic architecture shared between ASD and cognitive traits, demonstrated mixed effect directions, and identified the associated genetic loci and molecular pathways. The findings suggest that common genetic risk factors for ASD can underlie both better and worse cognitive functioning across the ASD spectrum, with different underlying biology.
Assuntos
Sucesso Acadêmico , Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Cerebelo , CogniçãoRESUMO
BACKGROUND: Irritable bowel syndrome (IBS) often co-occurs with psychiatric and gastrointestinal disorders. A recent genome-wide association study (GWAS) identified several genetic risk variants for IBS. However, most of the heritability remains unidentified, and the genetic overlap with psychiatric and somatic disorders is not quantified beyond genome-wide genetic correlations. Here, we characterize the genetic architecture of IBS, further, investigate its genetic overlap with psychiatric and gastrointestinal phenotypes, and identify novel genomic risk loci. METHODS: Using GWAS summary statistics of IBS (53,400 cases and 433,201 controls), and psychiatric and gastrointestinal phenotypes, we performed bivariate casual mixture model analysis to characterize the genetic architecture and genetic overlap between these phenotypes. We leveraged identified genetic overlap to boost the discovery of genomic loci associated with IBS, and to identify specific shared loci associated with both IBS and psychiatric and gastrointestinal phenotypes, using the conditional/conjunctional false discovery rate (condFDR/conjFDR) framework. We used functional mapping and gene annotation (FUMA) for functional analyses. RESULTS: IBS was highly polygenic with 12k trait-influencing variants. We found extensive polygenic overlap between IBS and psychiatric disorders and to a lesser extent with gastrointestinal diseases. We identified 132 independent IBS-associated loci (condFDR < 0.05) by conditioning on psychiatric disorders (n = 127) and gastrointestinal diseases (n = 24). Using conjFDR, 70 unique loci were shared between IBS and psychiatric disorders. Functional analyses of shared loci revealed enrichment for biological pathways of the nervous and immune systems. Genetic correlations and shared loci between psychiatric disorders and IBS subtypes were different. CONCLUSIONS: We found extensive polygenic overlap of IBS and psychiatric and gastrointestinal phenotypes beyond what was revealed with genetic correlations. Leveraging the overlap, we discovered genetic loci associated with IBS which implicate a wide range of biological pathways beyond the gut-brain axis. Genetic differences may underlie the clinical subtype of IBS. These results increase our understanding of the pathophysiology of IBS which may form the basis for the development of individualized interventions.
Assuntos
Gastroenteropatias , Síndrome do Intestino Irritável , Transtornos Mentais , Humanos , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/complicações , Eixo Encéfalo-Intestino , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para DoençaRESUMO
While neurological and psychiatric disorders have historically been considered to reflect distinct pathogenic entities, recent findings suggest shared pathobiological mechanisms. However, the extent to which these heritable disorders share genetic influences remains unclear. Here, we performed a comprehensive analysis of GWAS data, involving nearly 1 million cases across ten neurological diseases and ten psychiatric disorders, to compare their common genetic risk and biological underpinnings. Using complementary statistical tools, we demonstrate widespread genetic overlap across the disorders, even in the absence of genetic correlations. This indicates that a large set of common variants impact risk of multiple neurological and psychiatric disorders, but with divergent effect sizes. Furthermore, biological interrogation revealed a range of biological processes associated with neurological diseases, while psychiatric disorders consistently implicated neuronal biology. Altogether, the study indicates that neurological and psychiatric disorders share key etiological aspects, which has important implications for disease classification, precision medicine, and clinical practice.
RESUMO
Personality and cognitive function are heritable mental traits whose genetic foundations may be distributed across interconnected brain functions. Previous studies have typically treated these complex mental traits as distinct constructs. We applied the 'pleiotropy-informed' multivariate omnibus statistical test to genome-wide association studies of 35 measures of neuroticism and cognitive function from the UK Biobank (n = 336,993). We identified 431 significantly associated genetic loci with evidence of abundant shared genetic associations, across personality and cognitive function domains. Functional characterization implicated genes with significant tissue-specific expression in all tested brain tissues and brain-specific gene sets. We conditioned independent genome-wide association studies of the Big 5 personality traits and cognitive function on our multivariate findings, boosting genetic discovery in other personality traits and improving polygenic prediction. These findings advance our understanding of the polygenic architecture of these complex mental traits, indicating a prominence of pleiotropic genetic effects across higher order domains of mental function such as personality and cognitive function.
Assuntos
Estudo de Associação Genômica Ampla , Personalidade , Humanos , Personalidade/genética , Fenótipo , Herança Multifatorial/genética , CogniçãoRESUMO
BACKGROUND: Immune mechanisms are indicated in schizophrenia (SCZ). Recent genome-wide association studies (GWAS) have identified genetic variants associated with SCZ and immune-related phenotypes. Here, we use cutting edge statistical tools to identify shared genetic variants between SCZ and white blood cell (WBC) counts and further understand the role of the immune system in SCZ. STUDY DESIGN: GWAS results from SCZ (patients, n = 53 386; controls, n = 77 258) and WBC counts (n = 56 3085) were analyzed. We applied linkage disequilibrium score regression, the conditional false discovery rate method and the bivariate causal mixture model for analyses of genetic associations and overlap, and 2 sample Mendelian randomization to estimate causal effects. STUDY RESULTS: The polygenicity for SCZ was 7.5 times higher than for WBC count and constituted 32%-59% of WBC count genetic loci. While there was a significant but weak positive genetic correlation between SCZ and lymphocytes (rg = 0.05), the conditional false discovery rate method identified 383 shared genetic loci (53% concordant effect directions), with shared variants encompassing all investigated WBC subtypes: lymphocytes, n = 215 (56% concordant); neutrophils, n = 158 (49% concordant); monocytes, n = 146 (47% concordant); eosinophils, n = 135 (56% concordant); and basophils, n = 64 (53% concordant). A few causal effects were suggested, but consensus was lacking across different Mendelian randomization methods. Functional analyses indicated cellular functioning and regulation of translation as overlapping mechanisms. CONCLUSIONS: Our results suggest that genetic factors involved in WBC counts are associated with the risk of SCZ, indicating a role of immune mechanisms in subgroups of SCZ with potential for stratification of patients for immune targeted treatment.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Loci Gênicos , Fenótipo , Contagem de Leucócitos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Treatment resistant schizophrenia (TRS) is characterized by repeated treatment failure with antipsychotics. A recent genome-wide association study (GWAS) of TRS showed a polygenic architecture, but no significant loci were identified. Clozapine is shown to be the superior drug in terms of clinical effect in TRS; at the same time it has a serious side effect profile, including weight gain. Here, we sought to increase power for genetic discovery and improve polygenic prediction of TRS, by leveraging genetic overlap with Body Mass Index (BMI). We analysed GWAS summary statistics for TRS and BMI applying the conditional false discovery rate (cFDR) framework. We observed cross-trait polygenic enrichment for TRS conditioned on associations with BMI. Leveraging this cross-trait enrichment, we identified 2 novel loci for TRS at cFDR <0.01, suggesting a role of MAP2K1 and ZDBF2. Further, polygenic prediction based on the cFDR analysis explained more variance in TRS when compared to the standard TRS GWAS. These findings highlight putative molecular pathways which may distinguish TRS patients from treatment responsive patients. Moreover, these findings confirm that shared genetic mechanisms influence both TRS and BMI and provide new insights into the biological underpinnings of metabolic dysfunction and antipsychotic treatment.