Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(4): 2054-2069, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520346

RESUMO

Cell migration is vital for many fundamental biological processes and human pathologies throughout our life. Dynamic molecular changes in the tissue microenvironment determine modifications of cell movement, which can be reflected either individually or collectively. Endothelial cell (EC) migratory adaptation occurs during several events and phenomena, such as endothelial injury, vasculogenesis, and angiogenesis, under both normal and highly inflammatory conditions. Several advantageous processes can be supported by biomaterials. Endothelial cells are used in combination with various types of biomaterials to design scaffolds promoting the formation of mature blood vessels within tissue engineered structures. Appropriate selection, in terms of scaffolding properties, can promote desirable cell behavior to varying degrees. An increasing amount of research could lead to the creation of the perfect biomaterial for regenerative medicine applications. In this review, we summarize the state of knowledge regarding the possible systems by which inflammation may influence endothelial cell migration. We also describe the fundamental forces governing cell motility with a specific focus on ECs. Additionally, we discuss the biomaterials used for EC culture, which serve to enhance the proliferative, proangiogenic, and promigratory potential of cells. Moreover, we introduce the mechanisms of cell movement and highlight the significance of understanding these mechanisms in the context of designing scaffolds that promote tissue regeneration.


Assuntos
Materiais Biocompatíveis , Células Endoteliais , Humanos , Materiais Biocompatíveis/química , Células Endoteliais/metabolismo , Engenharia Tecidual , Inflamação , Movimento Celular
2.
Int J Biol Macromol ; 213: 259-267, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649439

RESUMO

In this study, using a new polymer combination of Chitosan(CH)/Xanthan Gum(XG) has been exhibited for wound dressing implementation by the 3D-Printing method, which was fabricated due to its biocompatible, biodegradable, improved mechanical strength, low degradation rate, and hydrophilic nature to develop cell-mimicking, cell adhesion, proliferation, and differentiation. Different concentrations of XG were added to the CH solution as 0.25, 0.50, 0.75, 1, and 2 wt% respectively in the formic acid/distilled water (1.5:8.5) solution and rheologically characterized to evaluate their printability. The results demonstrated that high mechanical strength, hydrophilic properties, and slow degradation rate were observed with the presence and increment of XG concentration within the 3D-Printed patches. Moreover, in vitro cell culture research was conducted by seeding NIH 3T3 fibroblast cells on the patches, proving the cell proliferation rate, viability, and adhesion. Finally, 1% XG and 4% CH containing 3D-Printed patches were great potential for wound dressing applications.


Assuntos
Quitosana , Bandagens , Quitosana/farmacologia , Polissacarídeos Bacterianos/farmacologia , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA