Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Photochem Photobiol Sci ; 23(9): 1641-1657, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39222199

RESUMO

The long-lived green luminescence of human bone (that has been heated to 600 °C for a short duration) is attributed to a carbon quantum dot material (derived from collagen) encapsulated and protected by an inorganic matrix (derived from bone apatite) and is more intense in dense rigid and crystalline parts of (healthy) human bones. The strong collagen-apatite interaction results (upon decomposition) in a protective inorganic environment of the luminescent centers allowing long-lived triplet-based emission of a carbon (quantum) dot-like material at room temperature, as well as resilience against oxidation between 550 and 650 °C. The graphitic black phase (obtained upon heating around 400 °C) is a precursor to the luminescent carbon-based material, that is strongly interacting with the crystalline inorganic matrix. Human bone samples that have been heated to 600 °C were subjected to steady-state and time-resolved spectroscopy. Excitation-emission matrix (EEM) luminescence spectroscopy revealed a broad range of excitation and emission wavelengths, indicating a heterogeneous system with a broad density of emissive states. The effect of low temperature on the heat-treated bone was studied with Cryogenic Steady State Luminescence Spectroscopy. Cooling the bone to 80 K leads to a slight increase in total emission intensity as well as an intensity increase towards to red part of the spectrum, incompatible with a defect state model displaying luminescent charge recombination in the inorganic matrix. Time-resolved spectroscopy with an Optical Multichannel Analyzer (OMA) and Time Correlated Single Photon Counting (TCSPC) of these samples showed that the decay could be fitted with a multi-exponential decay model as well as with second-order decay kinetics. Confocal Microscopy revealed distinct (plywood type) structures in the bone and high intensity-fast decay areas as well as a spatially heterogeneous distribution of green and (fewer) red emissive species. The use of the ATTO 565 dye aided in bone-structure visualization by chemical adsorption. Conceptually our data interpretation corresponds to previous reports from the material science field on luminescent powders.


Assuntos
Osso e Ossos , Temperatura Alta , Luminescência , Humanos , Osso e Ossos/química , Pontos Quânticos/química , Cremação , Medições Luminescentes , Colágeno/química
3.
Nat Methods ; 20(4): 541-545, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973546

RESUMO

We report the evolution of mScarlet3, a cysteine-free monomeric red fluorescent protein with fast and complete maturation, as well as record brightness, quantum yield (75%) and fluorescence lifetime (4.0 ns). The mScarlet3 crystal structure reveals a barrel rigidified at one of its heads by a large hydrophobic patch of internal residues. mScarlet3 behaves well as a fusion tag, displays no apparent cytotoxicity and it surpasses existing red fluorescent proteins as a Förster resonance energy transfer acceptor and as a reporter in transient expression systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Humanos , Células HeLa , Proteínas Luminescentes/metabolismo , Proteína Vermelha Fluorescente
4.
EMBO J ; 42(7): e108533, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36825437

RESUMO

Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized. Therefore, whether the mitochondrial matrix solvent exhibits macromolecular crowding is still unclear. Here, we demonstrate that fluorescent protein fusion peptides (AcGFP1 concatemers) in the mitochondrial matrix of HeLa cells display an elongated molecular structure and that their diffusion constant decreases with increasing molecular weight in a manner typical of macromolecular crowding. Chloramphenicol (CAP) treatment impaired mitochondrial function and reduced the number of cristae without triggering mitochondrial orthodox-to-condensed transition or a mitochondrial unfolded protein response. CAP-treated cells displayed progressive concatemer immobilization with increasing molecular weight and an eightfold matrix viscosity increase, compatible with increased macromolecular crowding. These results establish that the matrix solvent exhibits macromolecular crowding in functional and dysfunctional mitochondria. Therefore, changes in matrix crowding likely affect matrix biochemical reactions in a manner depending on the molecular weight of the involved crowders and reactants.


Assuntos
Mitocôndrias , Proteínas , Humanos , Células HeLa , Substâncias Macromoleculares/metabolismo , Proteínas/metabolismo , Solventes/metabolismo , Mitocôndrias/metabolismo
6.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681888

RESUMO

Spores of the bacterium Bacillus cereus can cause disease in humans due to contamination of raw materials for food manufacturing. These dormant, resistant spores can survive for years in the environment, but can germinate and grow when their surroundings become suitable, and spore germination proteins play an important role in the decision to germinate. Since germinated spores have lost dormant spores' extreme resistance, knowledge about the formation and function of germination proteins could be useful in suggesting new preservation strategies to control B. cereus spores. In this study, we confirmed that the GerR germinant receptor's (GR) A, B, and C subunits and GerD co-localize in B. cereus spore inner membrane (IM) foci termed germinosomes. The interaction between these proteins was examined by using fusions to the fluorescent reporter proteins SGFP2 and mScarlet-I and Förster Resonance Energy Transfer (FRET). This work found that the FRET efficiency was 6% between GerR(A-C-B)-SGFP2 and GerD-mScarlet-I, but there was no FRET between GerD-mScarlet-I and either GerRA-SGFP2 or GerRC-SGFP2. These results and that GerD does not interact with a GR C-subunit in vitro suggest that, in the germinosome, GerD interacts primarily with the GR B subunit. The dynamics of formation of germinosomes with GerR(A-C-B)-SGFP2 and GerD-mScarlet-I was also followed during sporulation. Our results showed heterogeneity in the formation of FRET positive foci of GerR(A-C-B)-SGFP2 and GerD-mScarlet-I; and while some foci formed at the same time, the formation of foci in the FRET channel could be significantly delayed. The latter finding suggests that either the GerR GR can at least transiently form IM foci in the absence of GerD, or that, while GerD is essential for GerR foci formation, the time to attain the final germinosome structure with close contacts between GerD and GerR can be heterogeneous.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Domínios e Motivos de Interação entre Proteínas , Esporos Bacterianos/metabolismo , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento
7.
Elife ; 102021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34190040

RESUMO

WNT/CTNNB1 signaling regulates tissue development and homeostasis in all multicellular animals, but the underlying molecular mechanism remains incompletely understood. Specifically, quantitative insight into endogenous protein behavior is missing. Here, we combine CRISPR/Cas9-mediated genome editing and quantitative live-cell microscopy to measure the dynamics, diffusion characteristics and absolute concentrations of fluorescently tagged, endogenous CTNNB1 in human cells under both physiological and oncogenic conditions. State-of-the-art imaging reveals that a substantial fraction of CTNNB1 resides in slow-diffusing cytoplasmic complexes, irrespective of the activation status of the pathway. This cytoplasmic CTNNB1 complex undergoes a major reduction in size when WNT/CTNNB1 is (hyper)activated. Based on our biophysical measurements, we build a computational model of WNT/CTNNB1 signaling. Our integrated experimental and computational approach reveals that WNT pathway activation regulates the dynamic distribution of free and complexed CTNNB1 across different subcellular compartments through three regulatory nodes: the destruction complex, nucleocytoplasmic shuttling, and nuclear retention.


Assuntos
Simulação por Computador , Modelos Biológicos , Transdução de Sinais/fisiologia , Análise de Célula Única/métodos , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Mutação , Proteínas Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/genética
8.
ISME J ; 15(2): 435-449, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32989245

RESUMO

Arbuscular mycorrhizal fungi function as conduits for underground nutrient transport. While the fungal partner is dependent on the plant host for its carbon (C) needs, the amount of nutrients that the fungus allocates to hosts can vary with context. Because fungal allocation patterns to hosts can change over time, they have historically been difficult to quantify accurately. We developed a technique to tag rock phosphorus (P) apatite with fluorescent quantum-dot (QD) nanoparticles of three different colors, allowing us to study nutrient transfer in an in vitro fungal network formed between two host roots of different ages and different P demands over a 3-week period. Using confocal microscopy and raster image correlation spectroscopy, we could distinguish between P transfer from the hyphae to the roots and P retention in the hyphae. By tracking QD-apatite from its point of origin, we found that the P demands of the younger root influenced both: (1) how the fungus distributed nutrients among different root hosts and (2) the storage patterns in the fungus itself. Our work highlights that fungal trade strategies are highly dynamic over time to local conditions, and stresses the need for precise measurements of symbiotic nutrient transfer across both space and time.


Assuntos
Micorrizas , Apatitas , Nutrientes , Fósforo , Raízes de Plantas , Simbiose
9.
Curr Biol ; 29(12): 2043-2050.e8, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31178314

RESUMO

The world's ecosystems are characterized by an unequal distribution of resources [1]. Trade partnerships between organisms of different species-mutualisms-can help individuals cope with such resource inequality [2-4]. Trade allows individuals to exchange commodities they can provide at low cost for resources that are otherwise impossible or more difficult to access [5, 6]. However, as resources become increasingly patchy in time or space, it is unknown how organisms alter their trading strategies [7, 8]. Here, we show how a symbiotic fungus mediates trade with a host root in response to different levels of resource inequality across its network. We developed a quantum-dot-tracking technique to quantify phosphorus-trading strategies of arbuscular mycorrhizal fungi simultaneously exposed to rich and poor resource patches. By following fluorescent nanoparticles of different colors across fungal networks, we determined where phosphorus was hoarded, relocated, and transferred to plant hosts. We found that increasing exposure to inequality stimulated trade. Fungi responded to high resource variation by (1) increasing the total amount of phosphorus distributed to host roots, (2) decreasing allocation to storage, and (3) differentially moving resources within the network from rich to poor patches. Using single-particle tracking and high-resolution video, we show how dynamic resource movement may help the fungus capitalize on value differences across the trade network, physically moving resources to areas of high demand to gain better returns. Such translocation strategies can help symbiotic organisms cope with exposure to resource inequality.


Assuntos
Daucus carota/microbiologia , Glomeromycota/metabolismo , Micorrizas/fisiologia , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Simbiose , Nutrientes , Pontos Quânticos
10.
ACS Photonics ; 5(6): 2129-2136, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29963583

RESUMO

Light-emitting silicon nanoparticles (Si-NPs) are interesting for lighting applications due to their nontoxicity, chemical robustness, and photostability; however, they are not practically considered due to their low emission efficiencies. While large Si-NPs emitting in the red to infrared spectral region show ensemble emission quantum efficiencies up to 60%, the emission efficiencies of smaller Si-NPs, emitting in the visible spectral range, are far lower, typically below 10-20%. In this work, we test this efficiency limit by measuring for the first time the internal quantum efficiency (IQE), i.e., the higher bound of the emission quantum efficiency, considering only the emissive NPs within the ensemble, of Si-NPs emitting in the visible spectral range between 350 and 650 nm. On the basis of photoluminescence decay measurements in a Drexhage geometry, we show that Si-NPs with organic passivation (C:Si-NPs) can have high direct-bandgap-like radiative rates, which enable a high IQE over ∼50%. In this way, we demonstrate that Si-NPs can in principle be considered a competitive candidate as a phosphor in lighting applications and medical imaging also in the visible spectral range. Moreover, our findings show that the reason for the much lower ensemble emission efficiency is due to the fact that the ensemble consists of a low fraction of emissive NPs, most likely due to a low PL "blinking" duty cycle.

11.
mBio ; 8(5)2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900026

RESUMO

One of the mechanisms of ß-lactam antibiotic resistance requires the activity of d,d-carboxypeptidases (d,d-CPases) involved in peptidoglycan (PG) synthesis, making them putative targets for new antibiotic development. The activity of PG-synthesizing enzymes is often correlated with their association with other proteins. The PG layer is maintained in the periplasm between the two membranes of the Gram-negative cell envelope. Because no methods existed to detect in vivo interactions in this compartment, we have developed and validated a Förster resonance energy transfer assay. Using the fluorescent-protein donor-acceptor pair mNeonGreen-mCherry, periplasmic protein interactions were detected in fixed and in living bacteria, in single samples or in plate reader 96-well format. We show that the d,d-CPases PBP5, PBP6a, and PBP6b of Escherichia coli change dimer conformation between resting and active states. Complementation studies and changes in localization suggest that these d,d-CPases are not redundant but that their balanced activity is required for robust PG synthesis.IMPORTANCE The periplasmic space between the outer and the inner membrane of Gram-negative bacteria contains many essential regulatory, transport, and cell wall-synthesizing and -hydrolyzing proteins. To date, no assay is available to determine protein interactions in this compartment. We have developed a periplasmic protein interaction assay for living and fixed bacteria in single samples or 96-well-plate format. Using this assay, we were able to demonstrate conformation changes related to the activity of proteins that could not have been detected by any other living-cell method available. The assay uniquely expands our toolbox for antibiotic screening and mode-of-action studies.


Assuntos
Carboxipeptidases/química , Carboxipeptidases/metabolismo , Escherichia coli/enzimologia , Periplasma/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas Luminescentes , Peptidoglicano/química , Peptidoglicano/metabolismo , Periplasma/química , Periplasma/metabolismo , Conformação Proteica , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Proteína Vermelha Fluorescente
12.
Nat Methods ; 14(1): 53-56, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869816

RESUMO

We report the engineering of mScarlet, a truly monomeric red fluorescent protein with record brightness, quantum yield (70%) and fluorescence lifetime (3.9 ns). We developed mScarlet starting with a consensus synthetic template and using improved spectroscopic screening techniques; mScarlet's crystal structure reveals a planar and rigidified chromophore. mScarlet outperforms existing red fluorescent proteins as a fusion tag, and it is especially useful as a Förster resonance energy transfer (FRET) acceptor in ratiometric imaging.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/metabolismo , Imagem Molecular/métodos , Engenharia de Proteínas/métodos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Sobrevivência Celular , Células HeLa , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Células Tumorais Cultivadas , Proteína Vermelha Fluorescente
13.
Sci Rep ; 5: 12147, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26190255

RESUMO

SNAIL transcriptional factors are key regulators during development and disease. They arose early during evolution, and in cnidarians such as Nematostella vectensis, NvSNAILA/B are detected in invaginating tissues during gastrulation. The function of SNAIL proteins is well established in bilaterians but their roles in cnidarians remain unknown. The structure of NvSNAILA and B is similar to the human SNAIL1 and 2, including SNAG and zinc-finger domains. Here, we performed a molecular analysis on localization and mobility of NvSNAILA/B using mammalian cells and Nematostella embryos. NvSNAILA/B display nuclear localization and mobility similar to HsSNAIL1/2. Strikingly, NvSNAILA is highly enriched in the nucleoli and shuttles between the nucleoli and the nucleoplasm. Truncation of the N-terminal SNAG domain, reported to contain Nuclear Localization Signals, markedly reduces nucleolar levels, without effecting nuclear localization or mobility. Truncation of the C-terminal zinc-fingers, involved in DNA binding in higher organisms, significantly affects subcellular localization and mobility. Specifically, the zinc-finger domains are required for nucleolar enrichment of NvSNAILA. Differently from SNAIL transcriptional factors described before, NvSNAILA is specifically enriched in the nucleoli co-localizing with nucleolar markers even after nucleolar disruption. Our findings implicate additional roles for SNAG and zinc-finger domains, suggesting a role for NvSNAILA in the nucleolus.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Anêmonas-do-Mar/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Dedos de Zinco , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Nucléolo Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Células HeLa , Humanos , Espaço Intracelular , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Sinais de Localização Nuclear , Filogenia , Ligação Proteica , Alinhamento de Sequência , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
14.
Methods Mol Biol ; 1251: 135-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25391798

RESUMO

Fluorescence fluctuation spectroscopy techniques allow the quantification of fluorescent molecules present at the nanomolar concentration level. After a brief introduction to the technique, this chapter presents a protocol including background information in order to measure and quantify the molecular interaction of two signaling proteins inside the living cell using fluorescence cross-correlation spectroscopy.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mapeamento de Interação de Proteínas/métodos , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Calibragem , Corantes Fluorescentes , Células HeLa , Humanos , Transfecção
15.
Plant Cell ; 26(10): 4188-99, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25351493

RESUMO

Rhizobial Nod factors are the key signaling molecules in the legume-rhizobium nodule symbiosis. In this study, the role of the Nod factor receptors NOD FACTOR PERCEPTION (NFP) and LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) in establishing the symbiotic interface in root nodules was investigated. It was found that inside Medicago truncatula nodules, NFP and LYK3 localize at the cell periphery in a narrow zone of about two cell layers at the nodule apex. This restricted accumulation is narrower than the region of promoter activity/mRNA accumulation and might serve to prevent the induction of defense-like responses and/or to restrict the rhizobium release to precise cell layers. The distal cell layer where the receptors accumulate at the cell periphery is part of the meristem, and the proximal layer is part of the infection zone. In these layers, the receptors can most likely perceive the bacterial Nod factors to regulate the formation of symbiotic interface. Furthermore, our Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicates that NFP and LYK3 form heteromeric complexes at the cell periphery in M. truncatula nodules.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno , Lipopolissacarídeos/metabolismo , Medicago truncatula/genética , Medicago truncatula/microbiologia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/química , Proteínas Quinases/genética , Multimerização Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Simbiose
16.
Protoplasma ; 251(2): 307-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24420265

RESUMO

Originally developed for the field of physical chemistry, fluorescence fluctuation spectroscopy (FFS) has evolved to a family of methods to quantify concentrations, diffusion rates and interactions of fluorescently labelled molecules. The possibility to measure at the nanomolar concentration level and to combine these techniques with microscopy allow to study biological processes with high sensitivity in the living cell. In this review, the basic principles, challenges and recent developments of the most common FFS methods are being discussed and illustrated by intracellular applications.


Assuntos
Espectrometria de Fluorescência/métodos , Animais , Biotecnologia/instrumentação , Biotecnologia/métodos , Humanos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Espectrometria de Fluorescência/instrumentação
17.
Methods Mol Biol ; 1071: 17-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24052377

RESUMO

After providing a brief overview of the basics of fluorescence and FRET, this chapter discusses the most commonly used methods to record FRET. Emphasis is on microscopy methods that are widely used for biosensor imaging. We cover choice of instruments, describe various ways to detect FRET based on intensity as well as on donor lifetime, and provide some guidelines to match particular recording methods with specific scientific experiments. We end with an extensive discussion on further practical considerations that may greatly affect the success of the experiments.


Assuntos
Técnicas Biossensoriais/métodos , Imagem Molecular/métodos , Transferência Ressonante de Energia de Fluorescência , Espaço Intracelular/metabolismo , Microscopia de Fluorescência
18.
Methods Mol Biol ; 1076: 371-417, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24108635

RESUMO

Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy techniques. This has allowed the (in situ) study of biomolecules with unprecedented resolution, specificity, sensitivity, and ease of labeling. However, brighter FPs, more photostable FPs, and FPs that display an even better compatibility with biophysical microspectroscopic techniques are still highly desired. The key characteristics of FPs-absorption spectrum, emission spectrum, brightness, fluorescence lifetime, maturation rate, oligomeric state, photostability, pH sensitivity, and functionality in protein fusions-determine their application. This chapter will describe these key features and present several experimental protocols to optimize them.The optimization procedure contains three steps. First the amino acid sequence of a template FP is changed via random or site-directed mutagenesis. A primary screening based on fluorescence intensity, fluorescence lifetime, and emission spectrum is applied on the FP libraries expressed in bacteria. The most promising mutants are isolated, purified, and characterized in vitro. In this step all key characteristics are determined experimentally. Finally the new FPs are evaluated for use in vivo. The protein production and maturation is monitored in bacteria, while transfected mammalian cells report on the photostability, relative brightness, and correct localization to various subcellular compartments.


Assuntos
Fluorescência , Proteínas de Fluorescência Verde/química , Mutagênese Sítio-Dirigida , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Humanos , Conformação Proteica , Espectrometria de Fluorescência
19.
FEBS Lett ; 588(1): 151-9, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24291262

RESUMO

Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease.


Assuntos
Doença de Huntington/metabolismo , Corpos de Inclusão/metabolismo , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Corpos de Inclusão/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Microscopia Confocal , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Expansão das Repetições de Trinucleotídeos/genética
20.
Methods Cell Biol ; 117: 197-212, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143979

RESUMO

Membrane-localized receptor proteins are involved in many signaling cascades, and diffusion and oligomerization are key processes controlling their activity. In order to study these processes in living cells, fluorescence fluctuation spectroscopy techniques have been developed that allow the quantification of concentration levels, diffusion rates, and interactions between fluorescently labeled receptor proteins at the nanomolar concentration level. This chapter presents a brief introduction to the technique and a protocol to measure and quantify the diffusion and oligomerization of human histamine1 receptor complexes in living HeLa cells using line-scanning fluorescence cross-correlation spectroscopy.


Assuntos
Proteínas de Fluorescência Verde/química , Fótons , Receptores Histamínicos H1/química , Espectrometria de Fluorescência/estatística & dados numéricos , Difusão , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Imagem Molecular , Multimerização Proteica , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transdução de Sinais , Espectrometria de Fluorescência/métodos , Coloração e Rotulagem , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA