Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Alzheimers Dis ; 92(4): 1323-1339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36872776

RESUMO

BACKGROUND: Accurately identifying cognitive changes in Mexican American (MA) adults using the Mini-Mental State Examination (MMSE) requires knowledge of population-based norms for the MMSE, a scale which has widespread use in research settings. OBJECTIVE: To describe the distribution of MMSE scores in a large cohort of MA adults, assess the impact of MMSE requirements on their clinical trial eligibility, and explore which factors are most strongly associated with their MMSE scores. METHODS: Visits between 2004-2021 in the Cameron County Hispanic Cohort were analyzed. Eligible participants were ≥18 years old and of Mexican descent. MMSE distributions before and after stratification by age and years of education (YOE) were assessed, as was the proportion of trial-aged (50-85- year-old) participants with MMSE <24, a minimum MMSE cutoff most frequently used in Alzheimer's disease (AD) clinical trials. As a secondary analysis, random forest models were constructed to estimate the relative association of the MMSE with potentially relevant variables. RESULTS: The mean age of the sample set (n = 3,404) was 44.4 (SD, 16.0) years old and 64.5% female. Median MMSE was 28 (IQR, 28-29). The percentage of trial-aged participants (n = 1,267) with MMSE <24 was 18.6% overall and 54.3% among the subset with 0-4 YOE (n = 230). The five variables most associated with the MMSE in the study sample were education, age, exercise, C-reactive protein, and anxiety. CONCLUSION: The minimum MMSE cutoffs in most phase III prodromal-to-mild AD trials would exclude a significant proportion of trial-aged participants in this MA cohort, including over half of those with 0-4 YOE.


Assuntos
Doença de Alzheimer , Testes de Estado Mental e Demência , Americanos Mexicanos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Escolaridade , Americanos Mexicanos/psicologia , Texas , Valores de Referência , Adulto , Pessoa de Meia-Idade
2.
Sci Total Environ ; 832: 155007, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35381249

RESUMO

Increasing temperatures along with severe droughts are factors that may jeopardize the survival of the forests in the Mediterranean basin. In this region, Pinus pinaster is a common conifer species, that has been used as a model species in evolutionary studies due to its adaptive response to changing environments. Although its drought tolerance mechanisms are already known, knowledge about the dynamics of its root microbiota is still scarce. We aimed to decipher the structural (bacterial abundance), compositional, functional and associative changes of the P. pinaster rhizosphere bacterial communities in spring and summer, at DNA and RNA level (environmental DNA, live and dead cells, and those synthesizing proteins). A fundamental aspect of root microbiome-based approaches is to guarantee the correct origin of the samples. Thus, we assessed the genotype of host needles and roots from which rhizosphere samples were obtained. For more than 50% of the selected trees, genotype discrepancies were found and in three cases the plant species could not be determined. Rhizosphere bacterial communities were homogeneous with respect to diversity and structural levels regardless of the host genotype in both seasons. Nonetheless, significant changes were seen in the taxonomic profiles depending on the season. Seasonal changes were also evident in the bacterial co-occurrence patterns, both in DNA and RNA libraries. While spring communities switched to more complex networks, summer populations resulted in more compartmentalized networks, suggesting that these communities were facing a disturbance. These results may mirror the future status of bacterial communities in a context of climate change. A keystone hub was ascribed to the genus Phenylobacterium in the functional network calculated for summer. Overall, it is important to validate the origin and identity of plant samples in any plant-microbiota study so that more reliable ecological analyses are performed.


Assuntos
Pinus , Rizosfera , Bactérias/genética , Secas , Genótipo , Pinus/genética , Raízes de Plantas/microbiologia , RNA , Microbiologia do Solo , Árvores/genética
3.
Rev Peru Med Exp Salud Publica ; 37(3): 454-461, 2020 Dec 02.
Artigo em Espanhol, Inglês | MEDLINE | ID: mdl-33295547

RESUMO

OBJECTIVES: To determine the in vitro cytotoxic and genotoxic effect of the crude and ethanolic extract from the Curcuma longa L. rhizome. MATERIALS AND METHODS: The cytotoxic effect was evaluated using DU-145, HT-29, 3T3 BALB/c cell lines. The growth percentages in 48 hours; and the half maximal inhibitory concentration (IC50) were determined. The genotoxic effect on human genomic DNA was determined using the Tomasevich method. RESULTS: Crude extract produced an IC50 of 12.98 ± 0.21 µg/mL for the HT-29 tumor cell line, which is lower than the value obtained for DU-145, with an IC50 of 36.77 ± 9.12 µg/mL. The ethanolic extract presented an IC50 of 13.24 ± 0.77 and 20.54 ± 2.58 µg/mL for both cell lines, respectively; the curcumin standard compound presented an IC50 of 3.96 ± 0.60 and 13.94 ± 2.79 µg/mL, respectively. Crude extract concentrations of 50 and 100 mg/mL fragmented between 40% to 95% of human genomic DNA; while at 200 mg/mL, fragmentation was greater than 95%. The ethanolic extract at all concentrations did not fragment the DNA. Curcumin at 200 mg/mL fragmented less than 5% of human genomic DNA. CONCLUSIONS: The crude and ethanolic extracts of Curcuma longa L. demonstrate different in vitro cytotoxic effects for the human tumor cell lines DU-145 and HT-29; similar to the standard curcumin compound. The crude extract of Curcuma longa L. shows a potent genotoxic in vitro activity against human genomic DNA; this type of effect is not produced by the ethanolic extract.


OBJETIVOS: Determinar el efecto citotóxico y genotóxico in vitro del extracto crudo y etanólico del rizoma de Curcuma longa L. MATERIALES Y MÉTODOS: El efecto citotóxico fue evaluado utilizando líneas celulares DU-145, HT-29, 3T3 BALB/c. Se hallaron los porcentajes de crecimiento en 48 horas y se determinó la concentración inhibitoria 50 (CI50). El efecto genotóxico en el ADN genómico humano se determinó mediante el método Tomasevich. RESULTADOS: El extracto crudo produjo una CI50 de 12,98 ± 0,21 µg/mL para la línea celular tumoral HT-29, que es inferior a DU-145 con una CI50 de 36,77 ± 9,12 µg/mL; el extracto etanólico presentó una CI50 de 13,24 ± 0,77 y 20,54 ± 2,58 µg/mL para ambas líneas celulares, respectivamente; el compuesto estándar curcumina presentó una CI50 de 3,96 ± 0,60 y 13,94 ± 2,79 µg/mL, respectivamente. El extracto crudo a concentraciones de 50 y 100 mg/mL fragmentó entre el 40% a 95% de ADN genómico humano; mientras que, a 200 mg/mL, la fragmentación fue mayor al 95%. El extracto etanólico a todas las concentraciones no fragmentó el ADN. La curcumina a 200 mg/mL fragmentó menos del 5% de ADN genómico humano. CONCLUSIONES: Los extractos crudo y etanólico de Curcuma longa L. demuestran efecto citotóxico in vitro diferencial para la línea celular tumoral humana DU-145 y HT29 semejante al compuesto estándar curcumina. El extracto crudo de Curcuma longa L. presenta una potente actividad genotóxica in vitro frente al ADN genómico humano, esta actividad está ausente en el extracto etanólico.


Assuntos
Linhagem Celular Tumoral , Curcuma , Extratos Vegetais , Rizoma , Linhagem Celular Tumoral/efeitos dos fármacos , Curcumina/farmacologia , Citotoxinas , Dano ao DNA/efeitos dos fármacos , Etanol , Humanos , Concentração Inibidora 50 , Extratos Vegetais/farmacologia
4.
Ecol Evol ; 10(18): 9788-9807, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005345

RESUMO

Adaptation of long-living forest trees to respond to environmental changes is essential to secure their performance under adverse conditions. Water deficit is one of the most significant stress factors determining tree growth and survival. Maritime pine (Pinus pinaster Ait.), the main source of softwood in southwestern Europe, is subjected to recurrent drought periods which, according to climate change predictions for the years to come, will progressively increase in the Mediterranean region. The mechanisms regulating pine adaptive responses to environment are still largely unknown. The aim of this work was to go a step further in understanding the molecular mechanisms underlying maritime pine response to water stress and drought tolerance at the whole plant level. A global transcriptomic profiling of roots, stems, and needles was conducted to analyze the performance of siblings showing contrasted responses to water deficit from an ad hoc designed full-sib family. Although P. pinaster is considered a recalcitrant species for vegetative propagation in adult phase, the analysis was conducted using vegetatively propagated trees exposed to two treatments: well-watered and moderate water stress. The comparative analyses led us to identify organ-specific genes, constitutively expressed as well as differentially expressed when comparing control versus water stress conditions, in drought-sensitive and drought-tolerant genotypes. Different response strategies can point out, with tolerant individuals being pre-adapted for coping with drought by constitutively expressing stress-related genes that are detected only in latter stages on sensitive individuals subjected to drought.

5.
Rev. peru. med. exp. salud publica ; 37(3): 454-461, jul-sep 2020. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1145016

RESUMO

RESUMEN Objetivos: Determinar el efecto citotóxico y genotóxico in vitro del extracto crudo y etanólico del rizoma de Curcuma longa L. Materiales y métodos: El efecto citotóxico fue evaluado utilizando líneas celulares DU-145, HT-29, 3T3 BALB/c. Se hallaron los porcentajes de crecimiento en 48 horas y se determinó la concentración inhibitoria 50 (CI50). El efecto genotóxico en el ADN genómico humano se determinó mediante el método Tomasevich. Resultados: El extracto crudo produjo una CI50 de 12,98 ± 0,21 μg/mL para la línea celular tumoral HT-29, que es inferior a DU-145 con una CI50 de 36,77 ± 9,12 μg/mL; el extracto etanólico presentó una CI50 de 13,24 ± 0,77 y 20,54 ± 2,58 µg/mL para ambas líneas celulares, respectivamente; el compuesto estándar curcumina presentó una CI50 de 3,96 ± 0,60 y 13,94 ± 2,79 μg/mL, respectivamente. El extracto crudo a concentraciones de 50 y 100 mg/mL fragmentó entre el 40% a 95% de ADN genómico humano; mientras que, a 200 mg/mL, la fragmentación fue mayor al 95%. El extracto etanólico a todas las concentraciones no fragmentó el ADN. La curcumina a 200 mg/mL fragmentó menos del 5% de ADN genómico humano. Conclusiones: Los extractos crudo y etanólico de Curcuma longa L. demuestran efecto citotóxico in vitro diferencial para la línea celular tumoral humana DU-145 y HT29 semejante al compuesto estándar curcumina. El extracto crudo de Curcuma longa L. presenta una potente actividad genotóxica in vitro frente al ADN genómico humano, esta actividad está ausente en el extracto etanólico.


ABSTRACT Objectives: To determine the in vitro cytotoxic and genotoxic effect of the crude and ethanolic extract from the Curcuma longa L. rhizome. Materials and methods: The cytotoxic effect was evaluated using DU-145, HT-29, 3T3 BALB/c cell lines. The growth percentages in 48 hours; and the half maximal inhibitory concentration (IC50) were determined. The genotoxic effect on human genomic DNA was determined using the Tomasevich method. Results: Crude extract produced an IC50 of 12.98 ± 0.21 μg/mL for the HT-29 tumor cell line, which is lower than the value obtained for DU-145, with an IC50 of 36.77 ± 9.12 μg/mL. The ethanolic extract presented an IC50 of 13.24 ± 0.77 and 20.54 ± 2.58 μg/mL for both cell lines, respectively; the curcumin standard compound presented an IC50 of 3.96 ± 0.60 and 13.94 ± 2.79 μg/mL, respectively. Crude extract concentrations of 50 and 100 mg/mL fragmented between 40% to 95% of human genomic DNA; while at 200 mg/mL, fragmentation was greater than 95%. The ethanolic extract at all concentrations did not fragment the DNA. Curcumin at 200 mg/mL fragmented less than 5% of human genomic DNA. Conclusions: The crude and ethanolic extracts of Curcuma longa L. demonstrate different in vitro cytotoxic effects for the human tumor cell lines DU-145 and HT-29; similar to the standard curcumin compound. The crude extract of Curcuma longa L. shows a potent genotoxic in vitro activity against human genomic DNA; this type of effect is not produced by the ethanolic extract.


Assuntos
Técnicas In Vitro , Curcuma , Rizoma , Linhagem Celular Tumoral , Misturas Complexas , Linhagem Celular , Células HT29 , Concentração Inibidora 50 , Células 3T3 BALB
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA