Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lancet Glob Health ; 11(5): e759-e769, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061313

RESUMO

BACKGROUND: Several vaccine candidates are in development against MERS-CoV, which remains a major public health concern. In anticipation of available MERS-CoV vaccines, we examine strategies for their optimal deployment among health-care workers. METHODS: Using data from the 2013-14 Saudi Arabia epidemic, we use a counterfactual analysis on inferred transmission trees (who-infected-whom analysis) to assess the potential impact of vaccination campaigns targeting health-care workers, as quantified by the proportion of cases or deaths averted. We investigate the conditions under which proactive campaigns (ie vaccinating in anticipation of the next outbreak) would outperform reactive campaigns (ie vaccinating in response to an unfolding outbreak), considering vaccine efficacy, duration of vaccine protection, effectiveness of animal reservoir control measures, wait (time between vaccination and next outbreak, for proactive campaigns), reaction time (for reactive campaigns), and spatial level (hospital, regional, or national, for reactive campaigns). We also examine the relative efficiency (cases averted per thousand doses) of different strategies. FINDINGS: The spatial scale of reactive campaigns is crucial. Proactive campaigns outperform campaigns that vaccinate health-care workers in response to outbreaks at their hospital, unless vaccine efficacy has waned significantly. However, reactive campaigns at the regional or national levels consistently outperform proactive campaigns, regardless of vaccine efficacy. When considering the number of cases averted per vaccine dose administered, the rank order is reversed: hospital-level reactive campaigns are most efficient, followed by regional-level reactive campaigns, with national-level and proactive campaigns being least efficient. If the number of cases required to trigger reactive vaccination increases, the performance of hospital-level campaigns is greatly reduced; the impact of regional-level campaigns is variable, but that of national-level campaigns is preserved unless triggers have high thresholds. INTERPRETATION: Substantial reduction of MERS-CoV morbidity and mortality is possible when vaccinating only health-care workers, underlining the need for countries at risk of outbreaks to stockpile vaccines when available. FUNDING: UK Medical Research Council, UK National Institute for Health Research, UK Research and Innovation, UK Academy of Medical Sciences, The Novo Nordisk Foundation, The Schmidt Foundation, and Investissement d'Avenir France.


Assuntos
Epidemias , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Vacinação , Pessoal de Saúde , Surtos de Doenças/prevenção & controle , Epidemias/prevenção & controle
2.
Elife ; 102021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34253291

RESUMO

Background: Vaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries. Methods: Twenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios. Results: We estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases. Conclusions: This study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future. Funding: VIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.


Assuntos
Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/uso terapêutico , COVID-19 , Saúde Global , Modelos Biológicos , SARS-CoV-2 , Infecções Bacterianas/epidemiologia , Humanos
3.
Elife ; 102021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34219653

RESUMO

Background: Sanofi-Pasteur's CYD-TDV is the only licensed dengue vaccine. Two phase three trials showed higher efficacy in seropositive than seronegative recipients. Hospital follow-up revealed increased hospitalisation in 2-5- year-old vaccinees, where serostatus and age effects were unresolved. Methods: We fit a survival model to individual-level data from both trials, including year 1 of hospital follow-up. We determine efficacy by age, serostatus, serotype and severity, and examine efficacy duration and vaccine action mechanism. Results: Our modelling indicates that vaccine-induced immunity is long-lived in seropositive recipients, and therefore that vaccinating seropositives gives higher protection than two natural infections. Long-term increased hospitalisation risk outweighs short-lived immunity in seronegatives. Independently of serostatus, transient immunity increases with age, and is highest against serotype 4. Benefit is higher in seropositives, and risk enhancement is greater in seronegatives, against hospitalised disease than against febrile disease. Conclusions: Our results support vaccinating seropositives only. Rapid diagnostic tests would enable viable 'screen-then-vaccinate' programs. Since CYD-TDV acts as a silent infection, long-term safety of other vaccine candidates must be closely monitored. Funding: Bill & Melinda Gates Foundation, National Institute for Health Research, UK Medical Research Council, Wellcome Trust, Royal Society. Clinical trial number: NCT01373281 and NCT01374516.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/classificação , Dengue/prevenção & controle , Modelos Biológicos , Adolescente , Teorema de Bayes , Criança , Pré-Escolar , Dengue/patologia , Vacinas contra Dengue/efeitos adversos , Humanos , Sorogrupo , Análise de Sobrevida
4.
BMJ Open ; 11(4): e050346, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888533

RESUMO

OBJECTIVE: To measure the effects of the tier system on the COVID-19 pandemic in the UK between the first and second national lockdowns, before the emergence of the B.1.1.7 variant of concern. DESIGN: This is a modelling study combining estimates of real-time reproduction number Rt (derived from UK case, death and serological survey data) with publicly available data on regional non-pharmaceutical interventions. We fit a Bayesian hierarchical model with latent factors using these quantities to account for broader national trends in addition to subnational effects from tiers. SETTING: The UK at lower tier local authority (LTLA) level. 310 LTLAs were included in the analysis. PRIMARY AND SECONDARY OUTCOME MEASURES: Reduction in real-time reproduction number Rt . RESULTS: Nationally, transmission increased between July and late September, regional differences notwithstanding. Immediately prior to the introduction of the tier system, Rt averaged 1.3 (0.9-1.6) across LTLAs, but declined to an average of 1.1 (0.86-1.42) 2 weeks later. Decline in transmission was not solely attributable to tiers. Tier 1 had negligible effects. Tiers 2 and 3, respectively, reduced transmission by 6% (5%-7%) and 23% (21%-25%). 288 LTLAs (93%) would have begun to suppress their epidemics if every LTLA had gone into tier 3 by the second national lockdown, whereas only 90 (29%) did so in reality. CONCLUSIONS: The relatively small effect sizes found in this analysis demonstrate that interventions at least as stringent as tier 3 are required to suppress transmission, especially considering more transmissible variants, at least until effective vaccination is widespread or much greater population immunity has amassed.


Assuntos
COVID-19 , SARS-CoV-2 , Teorema de Bayes , Controle de Doenças Transmissíveis , Humanos , Pandemias , Reino Unido/epidemiologia
5.
Nature ; 593(7858): 266-269, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767447

RESUMO

The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Número Básico de Reprodução , COVID-19/diagnóstico , COVID-19/epidemiologia , Criança , Pré-Escolar , Inglaterra/epidemiologia , Evolução Molecular , Genoma Viral/genética , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/genética , Fatores de Tempo , Adulto Jovem
6.
Science ; 324(5934): 1557-61, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19433588

RESUMO

A novel influenza A (H1N1) virus has spread rapidly across the globe. Judging its pandemic potential is difficult with limited data, but nevertheless essential to inform appropriate health responses. By analyzing the outbreak in Mexico, early data on international spread, and viral genetic diversity, we make an early assessment of transmissibility and severity. Our estimates suggest that 23,000 (range 6000 to 32,000) individuals had been infected in Mexico by late April, giving an estimated case fatality ratio (CFR) of 0.4% (range: 0.3 to 1.8%) based on confirmed and suspected deaths reported to that time. In a community outbreak in the small community of La Gloria, Veracruz, no deaths were attributed to infection, giving an upper 95% bound on CFR of 0.6%. Thus, although substantial uncertainty remains, clinical severity appears less than that seen in the 1918 influenza pandemic but comparable with that seen in the 1957 pandemic. Clinical attack rates in children in La Gloria were twice that in adults (<15 years of age: 61%; >/=15 years: 29%). Three different epidemiological analyses gave basic reproduction number (R0) estimates in the range of 1.4 to 1.6, whereas a genetic analysis gave a central estimate of 1.2. This range of values is consistent with 14 to 73 generations of human-to-human transmission having occurred in Mexico to late April. Transmissibility is therefore substantially higher than that of seasonal flu, and comparable with lower estimates of R0 obtained from previous influenza pandemics.


Assuntos
Surtos de Doenças , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/epidemiologia , Saúde Global , Humanos , Influenza Humana/mortalidade , Influenza Humana/transmissão , Influenza Humana/virologia , México/epidemiologia , Dados de Sequência Molecular , Viagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA