Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Otol Neurotol ; 45(5): 495-501, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561601

RESUMO

HYPOTHESIS: Cyclodextrin (CDX)-induced serum prestin burst is not dependent on outer hair cell (OHC) loss. BACKGROUND: Serum prestin has been proposed as a biomarker for ototoxicity. We recently used an automated Western approach to quantify serum prestin changes in a newly introduced model of CDX ototoxicity. To gain insights into prestin as a biomarker, here we further characterize serum prestin in the CDX model. METHODS: Guinea pigs were treated with 750, 3,000, or 4,000 mg/kg CDX, and serum samples were obtained through up to 15 weeks after exposure. Serum prestin levels were quantified using automated Western, and hair cell counts were obtained. RESULTS: All three doses induced an N -glycosylated ~134-kDa prestin burst; however, only the 3,000 and 4,000 mg/kg resulted in robust OHC loss. Prestin levels returned to baseline where they remained up to 15 weeks in the absence of OHCs. CONCLUSION: The ~134-kDa prestin burst induced after CDX administration is N -glycosylated, representing a posttranslational modification of prestin. Serum prestin seems to be a promising biomarker when using therapeutics with ototoxic properties because it is not dependent on OHC loss as a necessary event, thus affording the opportunity for early detection and intervention.


Assuntos
Células Ciliadas Auditivas Externas , Animais , Cobaias , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/patologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Ototoxicidade/etiologia , Transportadores de Sulfato/metabolismo
2.
Otol Neurotol ; 44(9): e653-e659, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590840

RESUMO

HYPOTHESIS: Ototoxin cyclodextrin (CDX) will induce a burst in serum prestin when quantified with automated Western blot analysis. BACKGROUND: In the clinical realm, we primarily rely on audiological measures for diagnosis and surveillance of sensorineural hearing loss (SNHL) and have limited therapeutic options. We have proposed a blood-based biomarker approach to overcome this challenge by measuring the outer hair cell's (OHC) electromotile protein, prestin, in the blood. Previously, we demonstrated a burst in serum prestin after cisplatin exposure using enzyme-linked immunosorbent assayELISA. METHODS: Guinea pigs were treated with either 3,000 or 4,000 mg/kg CDX, and serum samples were obtained through 3 days after exposure. Serum prestin levels were quantified using automated blot analysis, western and hair cell counts were obtained. RESULTS: Both 3,000 and 4,000 mg/kg resulted in robust OHC loss, although more variability was seen at the lower dose. Automated Western blot analysis demonstrated that the prestin profile after CDX exposure is different than baseline. Specifically, a new ~134- kDa band accounted for the prestin burst after ototoxin ablation of OHCs at both doses. CONCLUSIONS: We reproduced the prestin burst seen after cisplatin administration using CDX. Automated Western blot western analysis revealed that a ~a ~ 134- kDa species of prestin is responsible for the burst. We suggest that the induced band may be a prestin dimer, which could serve as a biomarker for early detection of ototoxicity in the clinical setting. These results add further promise to the potential of serum prestin to serve as an ototoxicity biomarker when using therapeutics with ototoxic properties.


Assuntos
Audiologia , Ciclodextrinas , Ototoxicidade , Animais , Cobaias , Cisplatino , Western Blotting
3.
Front Cell Dev Biol ; 9: 777836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957108

RESUMO

Programmed cell death (PCD) plays a critical role in the development and maturation of the cochlea. Significant remodeling occurs among cells of the greater epithelial ridge (GER) of Kölliker's organ, leading to tissue regression and formation of the inner sulcus. In mice, this event normally occurs between postnatal days 5-15 (P5-15) and is regulated by thyroid hormone (T3). During this developmental time period, the cochlea also contains a large population of macrophages. Macrophages are frequently involved in the phagocytic clearance of dead cells, both during development and after injury, but the role of macrophages in the developing cochlea is unknown. This study examined the link between developmental cell death in the GER and the recruitment of macrophages into this region. Cell death in the basal GER begins at P5 and enhanced numbers of macrophages were observed at P7. This pattern of macrophage recruitment was unchanged in mice that were genetically deficient for CX3CR1, the receptor for fractalkine (a known macrophage chemoattractant). We found that injection of T3 at P0 and P1 caused GER cell death to begin at P3, and this premature PCD was accompanied by earlier recruitment of macrophages. We further found that depletion of macrophages from the developing cochlea (using CX3CR1DTR/+ mice and treatment with the CSF1R antagonist BLZ945) had no effect on the pattern of GER regression. Together, these findings suggest that macrophages are recruited into the GER region after initiation of developmental PCD, but that they are not essential for GER regression during cochlear remodeling.

4.
Otol Neurotol ; 42(7): e849-e857, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33617194

RESUMO

OBJECTIVES: There are no approved pharmacologic therapies for chronic sensorineural hearing loss (SNHL). The combination of CHIR99021+valproic acid (CV, FX-322) has been shown to regenerate mammalian cochlear hair cells ex vivo. The objectives were to characterize the cochlear pharmacokinetic profile of CV in guinea pigs, then measure FX-322 in human perilymph samples, and finally assess safety and audiometric effects of FX-322 in humans with chronic SNHL. STUDY DESIGNS: Middle ear residence, cochlear distribution, and elimination profiles of FX-322 were assessed in guinea pigs. Human perilymph sampling following intratympanic FX-322 dosing was performed in an open-label study in cochlear implant subjects. Unilateral intratympanic FX-322 was assessed in a Phase 1b prospective, randomized, double-blinded, placebo-controlled clinical trial. SETTING: Three private otolaryngology practices in the US. PATIENTS: Individuals diagnosed with mild to moderately severe chronic SNHL (≤70 dB standard pure-tone average) in one or both ears that was stable for ≥6 months, medical histories consistent with noise-induced or idiopathic sudden SNHL, and no significant vestibular symptoms. INTERVENTIONS: Intratympanic FX-322. MAIN OUTCOME MEASURES: Pharmacokinetics of FX-322 in perilymph and safety and audiometric effects. RESULTS: After intratympanic delivery in guinea pigs and humans, FX-322 levels in the cochlear extended high-frequency region were observed and projected to be pharmacologically active in humans. A single dose of FX-322 in SNHL subjects was well tolerated with mild, transient treatment-related adverse events (n = 15 FX-322 vs 8 placebo). Of the six patients treated with FX-322 who had baseline word recognition in quiet scores below 90%, four showed clinically meaningful improvements (absolute word recognition improved 18-42%, exceeding the 95% confidence interval determined by previously published criteria). No significant changes in placebo-injected ears were observed. At the group level, FX-322 subjects outperformed placebo group in word recognition in quiet when averaged across all time points, with a mean improvement from baseline of 18.9% (p = 0.029). For words in noise, the treated group showed a mean 1.3 dB signal-to-noise ratio improvement (p = 0.012) relative to their baseline scores while placebo-treated subjects did not (-0.21 dB, p = 0.71). CONCLUSIONS: Delivery of FX-322 to the extended high-frequency region of the cochlea is well tolerated and enhances speech recognition performance in multiple subjects with stable chronic hearing loss.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Percepção da Fala , Animais , Cobaias , Perda Auditiva Neurossensorial/tratamento farmacológico , Humanos , Estudos Prospectivos , Inteligibilidade da Fala , Resultado do Tratamento
6.
J Am Acad Audiol ; 32(10): 661-669, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35609593

RESUMO

Sensorineural hearing loss (SNHL) is typically a permanent and often progressive condition that is commonly attributed to sensory cell loss. All vertebrates except mammals can regenerate lost sensory cells. Thus, SNHL is currently only treated with hearing aids or cochlear implants. There has been extensive research to understand how regeneration occurs in nonmammals, how hair cells form during development, and what limits regeneration in maturing mammals. These studies motivated efforts to identify therapeutic interventions to regenerate hair cells as a treatment for hearing loss, with a focus on targeting supporting cells to form new sensory hair cells. The approaches include gene therapy and small molecule delivery to the inner ear. At the time of this publication, early-stage clinical trials have been conducted to test targets that have shown evidence of regenerating sensory hair cells in preclinical models. As these potential treatments move closer to a clinical reality, it will be important to understand which therapeutic option is most appropriate for a given population. It is also important to consider which audiological tests should be administered to identify hearing improvement while considering the pharmacokinetics and mechanism of a given approach. Some impacts on audiological practice could include implementing less common audiological measures as standard procedure. As devices are not capable of repairing the damaged underlying biology, hair-cell regeneration treatments could allow patients to benefit more from their devices, move from a cochlear implant candidate to a hearing aid candidate, or move a subject to not needing an assistive device. Here, we describe the background, current state, and future implications of hair-cell regeneration research.


Assuntos
Orelha Interna , Perda Auditiva Neurossensorial , Perda Auditiva , Animais , Células Ciliadas Auditivas , Perda Auditiva Neurossensorial/terapia , Humanos , Mamíferos , Regeneração
7.
Hear Res ; 336: 63-71, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27157488

RESUMO

Age-related hearing loss (ARHL), clinically referred to as presbycusis, is one of the three most prevalent chronic medical conditions of our elderly, with the majority of persons over the age of 60 suffering from some degree of ARHL. The progressive loss of auditory sensitivity and perceptual capability results in significant declines in workplace productivity, quality of life, cognition and abilities to communicate effectively. Aldosterone is a mineralocorticoid hormone produced in the adrenal glands and plays a role in the maintenance of key ion pumps, including the Na-K(+)-Cl co-transporter 1 or NKCC1, which is involved in homeostatic maintenance of the endocochlear potential. Previously we reported that aldosterone (1 µM) increases NKCC1 protein expression in vitro and that this up-regulation of NKCC1 was not dose-dependent (dosing range from 1 nM to 100 µM). In the current study we measured behavioral and electrophysiological hearing function in middle-aged mice following long-term systemic treatment with aldosterone. We also confirmed that blood pressure remained stable during treatment and that NKCC1 protein expression was upregulated. Pre-pulse inhibition of the acoustic startle response was used as a functional measure of hearing, and the auditory brainstem response was used as an objective measure of peripheral sensitivity. Long-term treatment with aldosterone improved both behavioral and physiological measures of hearing (ABR thresholds). These results are the first to demonstrate a protective effect of aldosterone on age-related hearing loss and pave the way for translational drug development, using aldosterone as a key component to prevent or slow down the progression of ARHL.


Assuntos
Aldosterona/farmacologia , Presbiacusia/tratamento farmacológico , Envelhecimento/patologia , Animais , Limiar Auditivo , Pressão Sanguínea , Cognição , Progressão da Doença , Eletrofisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Camundongos , Camundongos Endogâmicos CBA , Presbiacusia/fisiopatologia , Qualidade de Vida , Reflexo de Sobressalto , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA