Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(11): 938, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347842

RESUMO

Inhibition of the mitochondrial metabolism offers a promising therapeutic approach for the treatment of cancer. Here, we identify the mycotoxin viriditoxin (VDT), derived from the endophytic fungus Cladosporium cladosporioides, as an interesting candidate for leukemia and lymphoma treatment. VDT displayed a high cytotoxic potential and rapid kinetics of caspase activation in Jurkat leukemia and Ramos lymphoma cells in contrast to solid tumor cells that were affected to a much lesser extent. Most remarkably, human hematopoietic stem and progenitor cells and peripheral blood mononuclear cells derived from healthy donors were profoundly resilient to VDT-induced cytotoxicity. Likewise, the colony-forming capacity was affected only at very high concentrations, which provides a therapeutic window for cancer treatment. Intriguingly, VDT could directly activate the mitochondrial apoptosis pathway in leukemia cells in the presence of antiapoptotic Bcl-2 proteins. The mitochondrial toxicity of VDT was further confirmed by inhibition of mitochondrial respiration, breakdown of the mitochondrial membrane potential (ΔΨm), the release of mitochondrial cytochrome c, generation of reactive oxygen species (ROS), processing of the dynamin-like GTPase OPA1 and subsequent fission of mitochondria. Thus, VDT-mediated targeting of mitochondrial oxidative phosphorylation (OXPHOS) might represent a promising therapeutic approach for the treatment of leukemia and lymphoma without affecting hematopoietic stem and progenitor cells.


Assuntos
Leucemia , Linfoma , Micotoxinas , Humanos , Micotoxinas/metabolismo , Leucócitos Mononucleares/metabolismo , Apoptose , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Potencial da Membrana Mitocondrial
2.
Molecules ; 26(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668501

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a group of molecules with an ambiguous background in literature. PBDEs were first isolated from marine sponges of Dysidea species in 1981 and have been under continuous research to the present day. This article summarizes the two research aspects, (i) the marine compound chemistry research dealing with naturally produced PBDEs and (ii) the environmental toxicology research dealing with synthetically-produced brominated flame-retardant PBDEs. The different bioactivity patterns are set in relation to the structural similarities and dissimilarities between both groups. In addition, this article gives a first structure-activity relationship analysis comparing both groups of PBDEs. Moreover, we provide novel data of a promising anticancer therapeutic PBDE (i.e., 4,5,6-tribromo-2-(2',4'-dibromophenoxy)phenol; termed P01F08). It has been known since 1995 that P01F08 exhibits anticancer activity, but the detailed mechanism remains poorly understood. Only recently, Mayer and colleagues identified a therapeutic window for P01F08, specifically targeting primary malignant cells in a low µM range. To elucidate the mechanistic pathway of cell death induction, we verified and compared its cytotoxicity and apoptosis induction capacity in Ramos and Jurkat lymphoma cells. Moreover, using Jurkat cells overexpressing antiapoptotic Bcl-2, we were able to show that P01F08 induces apoptosis mainly through the intrinsic mitochondrial pathway.


Assuntos
Antineoplásicos/farmacologia , Pesquisa Biomédica , Éteres Difenil Halogenados/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Éteres Difenil Halogenados/síntese química , Éteres Difenil Halogenados/química , Humanos , Relação Estrutura-Atividade , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA