Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313320

RESUMO

Activation of autonomic and hypothalamo-pituitary-adrenal (HPA) systems occur interdependently with behavioral adjustments under varying environmental demands. Nevertheless, laboratory rodent studies examining the neural bases of stress responses have generally attributed increments in these systems to be monolithic, regardless of whether an active or passive coping strategy is employed. Using the shock probe defensive burying test (SPDB) to measure stress-coping features naturalistically in male and female rats, we identify a neural pathway whereby activity changes may promote distinctive response patterns of hemodynamic and HPA indices typifying active and passive coping phenotypes. Optogenetic excitation of the rostral medial prefrontal cortex (mPFC) input to the ventrolateral periaqueductal gray (vlPAG) decreased passive behavior (immobility), attenuated the glucocorticoid hormone response, but did not prevent arterial pressure and heart rate increases associated with rats' active behavioral (defensive burying) engagement during the SPDB. By contrast, inhibition of the same pathway increased behavioral immobility and attenuated hemodynamic output but did not affect glucocorticoid increases. Correlational analyses confirmed that hemodynamic increments occurred preferentially during active behaviors, and decrements during immobility epochs, whereas pathway manipulations, regardless of the directionality of effect, weakened the correlational relationship. Finally, neuroanatomical evidence indicated that the influence of the rostral mPFC-vlPAG pathway on coping response patterns are mediated predominantly through GABAergic neurons within vlPAG. These data highlight the importance of this prefrontal-midbrain connection in organizing stress-coping responses, and in coordinating bodily systems with behavioral output for adaptation to aversive experiences.Significance statement Organisms maximize fitness by exhibiting distinct stress-coping responses that are specific to a particular challenge. However, the neurobiology underlying cortical control over coping styles is poorly understood. We reveal a novel role for a prefrontal-to-ventrolateral periaqueductal gray pathway in regulating active versus passive stress-coping response patterns in rats. Optogenetic excitation of this pathway decreased behavioral passivity, attenuated stress-induced glucocorticoid increases, but did not prevent associated increases in autonomic output. Pathway inhibition increased behavioral passivity, attenuated autonomic output, but did not affect glucocorticoid increases. These data highlight the importance of this prefrontal-midbrain connection in organizing stress-coping responses, and in coordinating bodily systems with behavioral output for adaptation to aversive experiences.

2.
J Neurosci ; 43(6): 918-935, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36604170

RESUMO

The establishment of a functional cerebral cortex depends on the proper execution of multiple developmental steps, culminating in dendritic and axonal outgrowth and the formation and maturation of synaptic connections. Dysregulation of these processes can result in improper neuronal connectivity, including that associated with various neurodevelopmental disorders. The γ-Protocadherins (γ-Pcdhs), a family of 22 distinct cell adhesion molecules that share a C-terminal cytoplasmic domain, are involved in multiple aspects of neurodevelopment including neuronal survival, dendrite arborization, and synapse development. The extent to which individual γ-Pcdh family members play unique versus common roles remains unclear. We demonstrated previously that the γ-Pcdh-C3 isoform (γC3), via its unique "variable" cytoplasmic domain (VCD), interacts in cultured cells with Axin1, a Wnt-pathway scaffold protein that regulates the differentiation and morphology of neurons. Here, we confirm that γC3 and Axin1 interact in the cortex in vivo and show that both male and female mice specifically lacking γC3 exhibit disrupted Axin1 localization to synaptic fractions, without obvious changes in dendritic spine density or morphology. However, both male and female γC3 knock-out mice exhibit severely decreased dendritic complexity of cortical pyramidal neurons that is not observed in mouse lines lacking several other γ-Pcdh isoforms. Combining knock-out with rescue constructs in cultured cortical neurons pooled from both male and female mice, we show that γC3 promotes dendritic arborization through an Axin1-dependent mechanism mediated through its VCD. Together, these data identify a novel mechanism through which γC3 uniquely regulates the formation of cortical circuitry.SIGNIFICANCE STATEMENT The complexity of a neuron's dendritic arbor is critical for its function. We showed previously that the γ-Protocadherin (γ-Pcdh) family of 22 cell adhesion molecules promotes arborization during development; it remained unclear whether individual family members played unique roles. Here, we show that one γ-Pcdh isoform, γC3, interacts in the brain with Axin1, a scaffolding protein known to influence dendrite development. A CRISPR/Cas9-generated mutant mouse line lacking γC3 (but not lines lacking other γ-Pcdhs) exhibits severely reduced dendritic complexity of cerebral cortex neurons. Using cultured γC3 knock-out neurons and a variety of rescue constructs, we confirm that the γC3 cytoplasmic domain promotes arborization through an Axin1-dependent mechanism. Thus, γ-Pcdh isoforms are not interchangeable, but rather can play unique neurodevelopmental roles.


Assuntos
Dendritos , Protocaderinas , Animais , Feminino , Masculino , Camundongos , Proteína Axina/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Dendritos/fisiologia , Camundongos Knockout , Plasticidade Neuronal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(44): e2210783119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306326

RESUMO

The question of how the brain links behavioral and biological features of defensive responses has remained elusive. The importance of this problem is underscored by the observation that behavioral passivity in stress coping is associated with elevations in glucocorticoid hormones, and each may carry risks for susceptibility to a host of stress-related diseases. Past work implicates the medial prefrontal cortex (mPFC) in the top-down regulation of stress-related behaviors; however, it is unknown whether such changes have the capacity to buffer against the longer-lasting biological consequences associated with aversive experiences. Using the shock probe defensive burying test in rats to naturalistically measure behavioral and endocrine features of coping, we observed that the active behavioral component of stress coping is associated with increases in activity along a circuit involving the caudal mPFC and midbrain dorsolateral periaqueductal gray (PAG). Optogenetic manipulations of the caudal mPFC-to-dorsolateral PAG pathway bidirectionally modulated active (escape and defensive burying) behaviors, distinct from a rostral mPFC-ventrolateral PAG circuit that instead limited passive (immobility) behavior. Strikingly, under conditions that biased rats toward a passive coping response set, including exaggerated stress hormonal output and increased immobility, excitation of the caudal mPFC-dorsolateral PAG projection significantly attenuated each of these features. These results lend insight into how the brain coordinates response features to overcome passive coping and may be of importance for understanding how activated neural systems promote stress resilience.


Assuntos
Adaptação Psicológica , Substância Cinzenta Periaquedutal , Ratos , Animais , Substância Cinzenta Periaquedutal/fisiologia , Córtex Pré-Frontal/fisiologia , Optogenética , Estresse Psicológico
4.
Cereb Cortex ; 30(1): 353-370, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184364

RESUMO

Previous work of ours and others has documented regressive changes in neuronal architecture and function in the medial prefrontal cortex (mPFC) of male rats following chronic stress. As recent focus has shifted toward understanding whether chronic stress effects on mPFC are sexually dimorphic, here we undertake a comprehensive analysis to address this issue. First, we show that chronic variable stress (14-day daily exposure to different challenges) resulted in a comparable degree of adrenocortical hyperactivity, working memory impairment, and dendritic spine loss in mPFC pyramidal neurons in both sexes. Next, exposure of female rats to 21-day regimen of corticosterone resulted in a similar pattern of mPFC dendritic spine attrition and increase in spine volume. Finally, we examined the effects of another widely used regimen, chronic restraint stress (CRS, 21-day of daily 6-h restraint), on dendritic spine changes in mPFC in both sexes. CRS resulted in response decrements in adrenocortical output (habituation), and induced a pattern of consistent, but less widespread, dendritic spine loss similar to the foregoing challenges. Our data suggest that chronic stress or glucocorticoid exposure induces a relatively undifferentiated pattern of structural and functional alterations in mPFC in both males and females.


Assuntos
Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Caracteres Sexuais , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Feminino , Glucocorticoides/administração & dosagem , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Sprague-Dawley , Estresse Psicológico/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA